K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

B C A M H K N D O I

a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.

Khi đó hai đường chéo bằng nhau nên BM = HK.

b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.

Vậy thì K là trung điểm BC.

Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.

Lại có MN vuông góc BC nên BMCN là hình thoi.

Dễ thấy rằng MK = AB/2 hay MN = AB.

Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.

Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.

c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.

Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.

Vậy nên BM giao AM tại trung điểm mỗi đoạn.

Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.

d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.

Ta có:  do KM // AB, áp dụng Talet:

 \(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)

\(\Rightarrow IM=2OM\)

Áp dụng Talet cho tam giác AND và ADC ta có:

\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)