Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AHBD có
M là trung điểm của đường chéo AB
M là trung điểm của đường chéo HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)(gt)
nên AHBD là hình chữ nhật
Xét tứ giác AHCE có
N là trung điểm của đường chéo AC
N là trung điểm của đường chéo HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
a: Xét ΔCBA có
H là trung điểm của BC
E là trung điểm của AC
Do đó: HE là đường trung bình của ΔCBA
Suy ra: HE//AB và \(HE=\dfrac{AB}{2}\)
hay HE//AD và HE=AD
Xét tứ giác ADHE có
HE//AD
HE=AD
Do đó: ADHE là hình bình hành
mà \(\widehat{EAD}=90^0\)
nên ADHE là hcn
b: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm chung của AB và EC
nên AEBC là hình bình hành
=>AE//BC và AE=BC
=>AD//AE và AD=AE
=>A là trung điểm của DE
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
DE//BC
mà H\(\in\)BC
nên DE//CH
Xét tứ giác DECH có DE//CH
nên DECH là hình thang
Ta có: ΔHAB vuông tại H
mà HD là đường trung tuyến
nên \(HD=DA=DB=\dfrac{AB}{2}\)
Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=AE=EC=\dfrac{AC}{2}\)
Xét ΔEAD và ΔEHD có
EA=EH
DA=DH
ED chung
Do đó: ΔEAD=ΔEHD
=>\(\widehat{EAD}=\widehat{EHD}=90^0\)
Xét tứ giác ADHE có
\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác AHCF có
E là trung điểm chung của AC và HF
=>AHCF là hình bình hành
Hình bình hành AHCF có \(\widehat{AHC}=90^0\)
nên AHCF là hình chữ nhật