Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
a. Ta thấy \(\widehat{HDC}=\widehat{HEC}=90^o\) nên CDHE là tứ giác nội tiếp đường tròn đường kính HC.
b. Ta thấy ngay \(\widehat{IAC}=\widehat{KBC}\) (Cùng phụ với góc ACB) nên \(\widebat{IC}=\widebat{KC}\) (Góc nội tiếp)
suy ra IC = KC ( Liên hệ giữa cung và dây)
Vậy nên tam giác IKC cân tại C.
c. Do \(\widebat{IC}=\widebat{KC}\) nên \(\widehat{KAC}=\widehat{ACI}\) (Góc nội tiếp)
Xét tam giác AHK có AE vừa là đường cao, vừa là phân giác nên AHK là tam giác cân tại A, hay AH = AK.
d. Ta thấy do BOF là đường kính nên \(\widehat{BCF}=90^o\Rightarrow\) AH // FC (Cùng vuông góc với BC).
Tương tự AF // HC vì cùng vuông góc với AB. Vậy thì AFCH là hình bình hành hay AC giao FH tại trung điểm mỗi đường.
P là trung điểm AC nên F cũng là trung điểm FH. Vậy F, H, P thẳng hàng.
a, Gọi I là trung điểm của BC
Tam giác BEC vuông tại E trung tuyến EI nên IE = IB = IC
Tam giác BFC vuông tại F trung tuyến FI nên IF = IB = IC
Vậy tứ giác BEFC cùng thuộc đường tròn tâm I bán kính IB
b, Ta có :
\(\widehat{ACK}=90^0\) ( góc nội tiếp chắn nửa đường tròn )
= > BH // CK ( cùng vuông góc với AC )
Tương tự ta cũng có CH // BK
= > BHCK là hình bình hành
= > 2 đường chéo cắt nhau tại trung điểm của mỗi đường
Mà I là trung điểm của BC
= > H,I,K thẳng hàng ( đpcm )
c, Dễ thấy các tứ giác AFHE và BFHD nội tiếp nên :
\(\widehat{DFE}=\widehat{DFH}+\widehat{HFE}=\widehat{HBD}+\widehat{HAF}=2\widehat{HBD}=2.\left(90^0-\widehat{C}\right)=180^0-2\widehat{C}\)
( Do góc HBD và HAF cùng phụ với góc C )
Lại có :
Tam giác EIC cân tại I nên :
\(\widehat{EIC}=180^0-\widehat{IEC}-\widehat{ECI}=180^0-2\widehat{C}\)
\(=>\widehat{EIC}=\widehat{DFE}\)
= > Tứ giác DFEI là tứ giác nội tiếp
= > D,F,E,I cùng thuộc 1 đường tròn