K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

a) Ta có: \(\angle AMH=\angle AEH=90\Rightarrow AEMH\) nội tiếp

\(\Rightarrow\angle AME=\angle AHE\)

Ta có: \(\angle HEC+\angle HDC=90+90=180\Rightarrow HECD\) nội tiếp

\(\Rightarrow\angle AHE=\angle ACD\Rightarrow\angle AME=\angle ACD\Rightarrow MECI\) nội tiếp

\(\Rightarrow\angle AME=\angle ACI\)

Xét \(\Delta AME\) và \(\Delta ACI:\) Ta có: \(\left\{{}\begin{matrix}\angle AME=\angle ACI\\\angle CAIchung\end{matrix}\right.\)

\(\Rightarrow\Delta AME\sim\Delta ACI\left(g-g\right)\Rightarrow\dfrac{AM}{AC}=\dfrac{AE}{AI}\Rightarrow AE.AC=AM.AI\)

b) Gọi T là trung điểm AH

Dễ dàng chứng minh được T là tâm (AEMH)

 \(\Rightarrow\Delta TEH\) cân tại T \(\Rightarrow\angle TEH=\angle THE=\angle ACB\) ​(HECD nội tiếp)

\(\Delta EBC\) ​vuông tại E có I là trung điểm BC cân tại I

 \(\Rightarrow\Delta EBI\) cân tại I \(\Rightarrow\angle BEI=\angle EBI\)

mà \(\angle EBI+\angle ACB=90\Rightarrow\angle BEI+\angle TEH=90\Rightarrow\angle TEI=90\)

\(\Rightarrow IE\) là tiếp tuyến của (AEMH) 

\(\Rightarrow\angle IAE=\angle IEM=\angle ICM\) (EMIC nội tiếp)

mà \(\angle IAE=\angle NBC\) (NBAC nội tiếp) \(\Rightarrow\angle ICM=\angle NBC\)

\(\Rightarrow CM\parallel BN\)

Tương tự \(\Rightarrow BM\parallel CN\) \(\Rightarrow BMCN\) là hình bình hành

mà I là trung điểm BC \(\Rightarrow I\) là trung điểm MN

undefined

 

  

 

 

25 tháng 6 2021

mỏi tay quá bạn :>

13 tháng 5 2021
Alo blu đen sô
13 tháng 5 2021
Alo bluuu đen sô
18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0