Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(AM=AC-MC=AC-MB=b-d\)
Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:
\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)
\(\Leftrightarrow c^2+b^2-2bd=0\)
Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)
\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)
b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)
Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)
\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)
Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)
\(\widehat{ACB}=\widehat{MCB}=15^o\)
Theo công thức Heron ta có :
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) \(\) (\(p\)=\(\frac{a+b+c}{2}=\frac{P}{2}\))
=>\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right).\)
=>\(16S^2=\left(2.p\right)\left[2\left(p-a\right)\right]\left[2\left(p-b\right)\right]\left[2\left(p-c\right)\right].\)
<=>\(16S^2=P.\left(P-2a\right)\left(P-2b\right)\left(P-2c\right).\left(đpcm\right)\)
+) cách chứng minh định lý Heron
Gọi a,b,c lần lượt là 3 cạnh của tam giác và A,B,C lần lượt là các góc đối diện của các cạnh .theo hệ quả định lí cô-si ta có
\(\cos\left(C\right)=\frac{a^2+b^2-c^2}{2ab}=>\sin\left(C\right)=\sqrt{1-\cos^2}=\frac{\sqrt{4a^2b^2-\left(a^2+b^2-c^2\right)^2}}{2ab}\)
ta có diện tích tam giác ABC
\(S=\frac{ab\sin\left(C\right)}{2}=\frac{1}{4}\sqrt{4a^2b^2\left(a^2+b^2-c^2\right)^2}\)
\(=\frac{1}{4}\left(2ab-\left(a^2+b^2-c^2\right)\right)\left(2ab+\left(a^2+b^2-c^2\right)\right)\)
\(=\frac{1}{4}\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\frac{1}{4}\left(c-\left(a-b\right)\right)\left(c+\left(a-b\right)\right)\left(\left(a+b\right)-c\right)\left(\left(a+b\right)+c\right)\)
\(=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)