K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

D ở đây ra vậy em?

13 tháng 10 2023

Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K

a: CK vuông góc AC

BH vuông góc AC

Do đó: CK//BH

BK vuông góc AB

CH vuông góc AB

Do đó: BK//CH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

 

a: Xét tứ giác BICH có

O là trung điểm của BC

O là trung điểm của HI

Do đó: BICH là hình bình hành

b: Ta có: BICH là hình bình hành

nên BI//CH và HB//IC

=>CI vuôg góc với AC và BI vuông góc với AB

c: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó:ΔABE\(\sim\)ΔACF

Suy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AC\cdot AE\)

20 tháng 7 2018

a) Ta thấy H là trực tâm tam giác ABC nên CH vuông góc AB. Suy ra DB song song CH.

Tương tự BH song song DC (Cùng vuông góc AC)

Vậy nên tứ giác BHCD là hình bình hành.

Do BHCD là hình bình hành nên \(\Delta BHC=\Delta CDB\left(c-g-c\right)\)

Lại có H' đối xứng với H qua BC nên \(\Delta BHC=\Delta BH'C\left(c-c-c\right)\)

Vậy thì \(\Delta CDB=\Delta BH'C\)

Gọi J là giao điểm của HH' và BC. Kẻ DK vuông góc BC tại K.

Khi đó ta có ngay H'J = KD. Vậy nên JKDH' là hình bình hành hay JK//H'D

Suy ra tứ giác BCDH' là hình thang.

Lại có : H'C = BD (Cùng bằng HC) nên BCDH' là hình thang cân.

b) Do BHCD là hình bình hành nên giao điểm của HD và BC là trung điểm mỗi đường. Ta gọi điểm đó là M.

Xét tam giác AHD có AM là trung tuyến, \(AG=\frac{2}{3}AM\) nên G là trọng tâm tam giác.

Vậy thì HG đi qua trung điểm AD, hay H, G, I thẳng hàng.

d) Để hình bình hành BHCD là hình thoi thì BH = HC. Vậy thì AH là đường cao đồng thời trung trực nên tam giác ABC là tam giác cân tại A.

Để hình bình hành BHCD là hình chữ nhật thì HC vuông góc BH. Lại có HC//BD nên BD//BH. Vậy thì BH trùng AB. Tương tự CH trùng AC.

Suy ra để BHCD là hình chữ nhật thì tam giác ABC vuông tại A.

a: Xét tứ giác AEHD có

\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

Do đó: AEHD là hình chữ nhật

7 tháng 10 2021

bạn có thể lm tiếp cho mik đc ko ạ

 

3 tháng 12 2016

a) là hình bình hành (chứng minh theo dấu hiệu: tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)

b) Áp dụng: trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bẳng nửa cạnh huyền.

*gợi ý: 2 tam giác vuông ABI và ACI =>  OB = OC ( = AI/2)

c) ko biết nữa