K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc DCA chung

=>ΔCDA đồng dạng với ΔCEB

=>CD/CE=CA/CB

=>CD*CB=CA*CE và CD/CA=CE/CB

b; Xét ΔCDE và ΔCAB có

CD/CA=CE/CB

góc C chung

=>ΔCDE đồng dạng với ΔCAB

c:

Xét ΔCAB có

AD,BE là đường cao

AD cắt BE tại H

=>H là trực tâm

=>CH vuông góc AB tại F

góc CEB=góc CFB=90 độ

=>CEFB nội tiếp

=>góc CEF+góc CBF=180 độ

mà góc CEF+góc AEF=180 độ

nên góc AEF=góc CBA

=>góc AEF=góc CED

1: góc BFC=góc BEC=90 độ

=>BFEC nộitiếp

Tâm là trung điểm của BC

2: góc EFC=góc DAC

góc DFC=góc EBC

góc DAC=góc EBC

=>góc EFC=góc DFC

=>FC là phân giác của góc EFD

BFEC nội tiếp

=>góc AFE=góc ACB

mà góc A chung

nên ΔAFE đồng dạng với ΔACB

=>AF/AC=AE/AB

=>AF*AB=AC*AE

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

26 tháng 10 2018

1) Chứng minh tứ giác AEHF nội tiếp đường tròn

BE là đường cao ABC  ⇒ B E ⊥ A C ⇒ A E H ^ = 90 0

CF là đường cao  ∆ ABC  ⇒ C F ⊥ A B ⇒ A F H ^ = 90 0

Tứ giác AEHF có A E H ^ + A F H ^ = 180 0  nên tứ giác AEHF nội tiếp đường tròn

2) Chứng minh CE.CA = CD.CB

∆ ADC và  ∆ BEC có

A D C ^ = B E C ^ = 90 0  (AD,BE là các đường cao)

C ^  chung

Do đó  ∆ ADC ~ ∆ BEC(g-g)

⇒ D C E C = A C B C ⇒ D C . B C = C E . A C

22 tháng 10 2021

b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có 

\(\widehat{DCA}\) chung

Do đó: ΔCEB\(\sim\)ΔCDA

Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)

hay \(CD\cdot CB=CE\cdot CA\)