Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc ABP=1/2*sđ cung AP=90 độ
=>BP//CH
góc ACP=1/2*sđ cung AP=90 độ
=>CP//BH
mà BP//CH
nên BHCP là hình bình hành
=>BC cắt HP tại trung điểm của mỗi đường
=>M là trung điểm của HP
1) Chứng minh tứ giác AEHF nội tiếp đường tròn
BE là đường cao ∆ ABC ⇒ B E ⊥ A C ⇒ A E H ^ = 90 0
CF là đường cao ∆ ABC ⇒ C F ⊥ A B ⇒ A F H ^ = 90 0
Tứ giác AEHF có A E H ^ + A F H ^ = 180 0 nên tứ giác AEHF nội tiếp đường tròn
2) Chứng minh CE.CA = CD.CB
∆ ADC và ∆ BEC có
A D C ^ = B E C ^ = 90 0 (AD,BE là các đường cao)
C ^ chung
Do đó ∆ ADC ~ ∆ BEC(g-g)
⇒ D C E C = A C B C ⇒ D C . B C = C E . A C
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xet ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
=>ΔBDH đồng dạng với ΔBEC
=>BH/BC=DH/EC
=>BH*EC=DH*BC
CM dễ vãi, AB, AC cắt nhau. Đường kính cất đường tròn tại giao D vs E
b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔCEB\(\sim\)ΔCDA
Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
hay \(CD\cdot CB=CE\cdot CA\)