Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
+ Xét \(\Delta ABD;\Delta AED\)có :
AB = AE ( gt)
BAD = EAD ( AD là p/g góc A)
AD là cạnh chung
=> \(\Delta ABD=\Delta AED\left(c-g-c\right)\)
+ Vì \(\Delta ABD=\Delta AED\Rightarrow\widehat{ABD}=\widehat{AED}\)( hai góc tương ứng)
=> \(\widehat{ABC}=\widehat{AEK}\)
+ Xét\(\Delta AEK;\Delta ABC\)có :
góc AEK = góc ABC
AE = AB (gt)
góc A chung
=> \(\Delta AEK=\Delta ABC\)( c-g-c)
=> AK = AC ( hai cạnh tương ứng)
+ Vì \(\hept{\begin{cases}AF=AB\\AE=AB\end{cases}\left(gt\right)\Rightarrow AE=AF}\)
+ Cmtt câu a, có : \(\Delta EAH=\Delta FAH\)(c-g-c)
=> \(\widehat{AEH}=\widehat{AFH}\)( hai góc tương ứng)
Mà góc BAC = AEH + AFH ( BAC là góc ngoài từ đỉnh A của tg AEF)
+ Vì AD là p/g của góc A => \(\widehat{BAD}=\widehat{DAE}=\frac{1}{2}\widehat{BAC}\)
=> \(\widehat{BAC}=2\widehat{DAE}\)(2)
=> \(\widehat{AEH}=\widehat{DAE}\)=> FE // AD ( 2 góc so le trong =)
b) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)