Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ND//MB,NM//BD ( N,M là tđ AB,AC)
\(\Rightarrow\)MNDB là hbh \(\Rightarrow S_{NDB}=S_{MNB}=S_{MNDB}:2\)
Có M là tđ AC nên \(S_{AMB}=S_{BMC}=\frac{1}{2}a\)
Lại có N là tđ AB nên \(S_{AMN}=S_{MNB}=\frac{1}{2}S_{AMB}=\frac{1}{2}.\frac{1}{2}a=\frac{1}{4}a\)\(\Leftrightarrow2S_{MNB}=\frac{1}{2}a\Leftrightarrow S_{MNDB}=\frac{1}{2}a\)
Vậy có \(S_{CMND}=S_{MNDB}+S_{BMC}=\frac{1}{2}a+\frac{1}{2}a=a\)
b/Kẻ AH là đ/cao ABC
Có \(a=\frac{1}{2}BC.AH\Rightarrow AH=\frac{a}{\frac{1}{2}BC}=\frac{128}{\frac{1}{2}.32}=8\)
Gọi K là giao điểm MN là AH
Có NK//BC và N là tđ AB nên K là tđ AH suy ra HK=AH:2=4
Mà HK cx là chiều cao CMND suy ra c/cao hình thang là 4
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng