K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Theo đề đúng thì lm như sau:

a) Có: DE // BF (gt)

EF // BD (gt)

Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)

b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)

ED // BC (gt) => DEF = EFC (so le trong) (2)

Từ (1) và (2) => ADE = EFC

Xét t/g ADE và t/g EFC có:

EAD = CEF ( đồng vị)

AD = EF ( cùng = BD)

ADE = EFC (cmt)

Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)

c) Xét t/g MFE và t/g MDB có:

MF = MD (gt)

MFE = MDB (so le trong)

FE = DB (câu a)

Do đó, t/g MFE = t/g MDB (c.g.c)

=> EMF = BMD (2 góc tương ứng)

Mà EMF + EMD = 180o

Nên BMD + EMD = 180o

=> BME = 180o

hay B,M,E thẳng hàng (đpcm)

 

19 tháng 12 2016

Đề sai rồi Trang ơi, xem lại đi

12 tháng 1 2017

cho  tam giác ABC ( AB khác AC) . tia phân giác Ax của góc A cắt BC ở D. từ D kẻ một đường thẳng song song với AB cắt AC tại F.từ D kẻ đường thẳng song song với AC cắt AB ở E.

a) CM AE=ED=DF=FA

b) từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với AC tại Pva cắt đường thẳng AB tại Q.CM EF song song với PQ.

c) CM BP=CQ

a: Xét tứ giác BDEF có 

DE//BF

BD//EF

Do đó: BDEF là hình bình hành

Suy ra: EF=BD

mà BD=AD

nên EF=AD

b: Xét ΔADF và ΔFEA có 

AD=FE

AF chung 

DF=EA

Do đó: ΔADF=ΔFEA

a: Ta có: BM//EF

EF\(\perp\)AH

Do đó: AH\(\perp\)BM

Xét ΔAMB có

AH là đường cao

AH là đường phân giác

Do đó: ΔAMB cân tại A

b: Xét ΔAFE có 

AH vừa là đường cao, vừa là đường phân giác

Do đó: ΔAFE cân tại A

=>AF=AE

Ta có: AF+FM=AM

AE+EB=AB

mà AF=AE và AM=AB

nên FM=EB

Xét ΔCMB có

D là trung điểm của CB

DF//MB

Do đó: F là trung điểm của CM

=>CF=FM

=>CF=FM=EB

23 tháng 1

phần c đâu ạ