K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

trên tia đối của MA lấy D sao cho MA = MD

tam giác ABM = DCM (c.g.c)

=>DC=AB

Xét tam giác ACD có:

DC+AC > AD (bất đẳng thức tam giác)

mà AD=MA+MD(cmt)

DC=AB(cmt)

=>AB+AC>2AM(ĐPCM)

7 tháng 4 2020

Trên tia đối của tia MA lấy E sao cho AM=ME=1/2.AE

Nối C với E. Xét tam giác AMB và tam giác CME có :

AM = ME ( cách lấy )

AMB = CME ( đối đỉnh )

BM = CM ( gt ) 

=> Tam giác AMB = CME ( c.g.c )

=> AB = CE ( 2 cạnh tương ứng ) 
Xét tam giác AEC có : 

AC + CE > AE ( BĐT tam giác )

=> AC + AB > 2AM ( ĐPCM)

7 tháng 4 2020

Bạn tham khảo tại link này 

https://h.vn/hoi-dap/question/219851.html

Câu hỏi của Hà Kiều Anh - Toán lớp 7 | Học trực tuyến

1 tháng 4 2020

-Kẻ BH vuông góc với AM; CK vuông góc với AM(H,K thuộc AM). => BHCK là hình bình hành 
=> BH= CK; M là trung điểm của BC nên cũng là trung điểm của HK.
-Áp dụng định lý Pytago vào tam giác AHB vuông tại H; tam giác BHM vuông tại H; tam giác AKC vuông tại K, ta có: AH^2+ BH^2=AB^2.
BH^2+HM^2=BM^2.
AK^2+KC^2=AC^2.
-Từ các điều ở trên ta có : BH^2+HM^2= (BC/2)^2.
=> 4.BH^2+4.HM^2 =BC^2.
=> 2.BH^2= (BC^2)/2 -2.HM^2.
=> 2.BH^2+4.HM^2= 2.HM^2+ (BC^2)/2.
=> 2.BH^2+2.AH^2 +4.HM^2+ 4.AH.HM= 2.AH^2+ 2.HM^2+ 4.AH.HM+ (BC/2)^2.
=> BH^2+CK^2+ AH^2+( AH^2+4.HM^2+ 4.AH.HM) =2.(AH^2+ HM^2+2.AH.HM) +(BC/2)^2.
=> BH^2+ AH^2+ CK^2+(AH^2+ HK^2+ 2.AH.HK) = 2.AM^2+ (BC/2)^2.
=> AB^2+ (CK^2+ AK^2)= 2.AM^2 + (BC/2)^2.
=> AB^2+AC^2= 2.AM^2 + (BC/2)^2 (đpcm). 

Tham khảo nha bn

26 tháng 10 2021

KẺ BH VUÔNG GÓC VỚI AM ; CK VUÔNG GÓC VỚI AM ( H.K THUỘC AM ) = > BHCK LÀ HINHFD BÌNH HÀNH = > BH = CK ; M ; LÀ TRUNG ĐIỂM CỦA BC NÊN CŨNG LÀ TRUNG ĐIỂM CỦA HK . - ÁP DỤNG ĐỊNH LÝ PYTAGO VÀO TAM GIÁC AHB VUÔNG TẠI H ; TAM GIÁC BHM VUÔNG TẠI H ; TAM GIÁC AKC VUÔNG TẠI K

4 tháng 9 2019

Gọi K là trung điểm của AC

Lúc đó: NK là đường trung bình của \(\Delta ABC\Rightarrow NK//BC,NK=\frac{1}{2}BC\)

Từ giả thiết suy ra \(AB=BN=CN\Rightarrow BM=\frac{1}{2}AB\)

Xét \(\Delta AMB\)và \(\Delta CKN\)có:

     AB = CN \(\left(=\frac{1}{2}BC\right)\)

    \(\widehat{ABM}=\widehat{CNK}\)(\(AB//NK\), đồng vị)

     BM = NK \(\left(=\frac{1}{2}AB\right)\)

Suy ra \(\Delta AMB\)\(=\Delta CKN\left(c-g-c\right)\)

\(\Rightarrow AM=CK\)(hai cạnh tương ứng)

Mà \(CK=\frac{1}{2}AC\Rightarrow AM=\frac{1}{2}AC\)

hay AC = 2AM (đpcm)

31 tháng 8 2019

Bài giải đây. Link ảnh (nếu lỗi): https://i.imgur.com/eTSzE2I.jpg

22 tháng 4 2015

a/ Tam giác ABM =DCM

Xét tam giác ABM và tam giác DCM, có     

     - MB =MC( M là trung điểm BC)

    - MA =MD( M là trung điểm AD)

    - Góc MAB =Góc MCD( đối đỉnh)

=> Tam giác ABM =DCM( c.g.c)

b/AC//BD

  Xét tam giác ACM và tam giác DBM, có

    - MB= MC( M là trung điểm BC)

    - MA=MD( M là trung điểm AD)

    - Góc AMC =Góc DMB( đối đỉnh)

->Tam giác ACM =tam giác DBM(c.g.c)

=>Góc MAC =MDB

Vậy AC//BD

 

    

 

24 tháng 12 2020

góc C nào bạn

 

24 tháng 12 2020

a) ta có △ABC vuông tại A=>góc ABC +góc BCA=90 độ

                                        30 độ+góc BCA=90 độ

                                                  góc BCA=90 độ -30 độ=60 độ

vậy góc BCA = 60 độ

b)Xét △CMD và△BMA có 

CM=MB (Vì M là trung điểm của BC)

góc CMD= góc BMA( 2 góc đối đỉnh )

MA=MD( giả thiết)

=> △CMD =△BMA(c-g-c) hay  △MAB=△MDC

vậy  △ MAB=△MDC

b) ta có △ MAB=△MDC(chứng minh câu a)

=> CD=AB;  góc CDM= góc MAB( 2 góc tương ứng)

hay góc CDA=góc DAB mà 2 góc này là 2 góc so le trong của đường thẳng AD cắt 2 đường thẳng CD và AB

=> CD//AB

ta có MA+MD=AD

MC+MB=BC 

mà MD=MA(giả thiết)

MC=MB( Vì M là trung điểm của BC)

=>AD=BC 

Xét △ACD và △CAB có 

AD=BC(chứng minh trên )

góc ADC= góc CBA

CD=AB(chứng minh trên)

=>△ACD = △CAB( c-g-c)

=> góc CAB=góc ACD

mà góc CAB=90 độ(vì △ ABC vuông tại A)

=>góc ACD=90 độ

=>AC⊥CD  

vậy AC⊥CD  

  c)ta có BC =AD( chứng minh câu b)

mà AM=MD(giả thiết) 

và MC=MB( Vì M là trung điểm của BC)

=>AM=\(\dfrac{BC}{2}\) =>BC=2.AM

vậy BC=2AM