Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)
Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)
\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)
\(\Rightarrow4MP=0\Rightarrow M\equiv P\)
Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC
a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)
\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)
\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC
b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)
\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)
\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)
a) Ta có \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\overrightarrow{MA}+\overrightarrow{BC}\) = \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}\)
⇒\(\left|\overrightarrow{MG}\right|=\left|\overrightarrow{BA}\right|\)
⇒ M là điểm trên đường tròn tâm G bk là AB
Có \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{BA}+\overrightarrow{MC}\).
Suy ra: \(\overrightarrow{BA}+\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MC}=\overrightarrow{AB}\)
Vậy điểm M được xác định sao cho \(\overrightarrow{MC}=\overrightarrow{AB}\).
A B C M
Lời giải:
Ta có:
\(|2\overrightarrow{MA}+\overrightarrow{MB}|=|4\overrightarrow{MB}-\overrightarrow{MC}|\)
\(\Leftrightarrow |2\overrightarrow{MA}+\overrightarrow{MB}|=|3\overrightarrow{MB}+\overrightarrow{MB}-\overrightarrow{MC}|=|3\overrightarrow{MB}+\overrightarrow{CB}|\) (1)
Lấy điểm $I$ sao cho \(2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)
Lấy điểm \(J\) sao cho \(3\overrightarrow{JB}+\overrightarrow{CB}=\overrightarrow{0}\)
Khi đó:
\((1)\Leftrightarrow |2(\overrightarrow{MI}+\overrightarrow{IA})+\overrightarrow{MI}+\overrightarrow{IB}|=|3(\overrightarrow{MJ}+\overrightarrow{JB})+\overrightarrow{CB}|\)
\(\Leftrightarrow |3\overrightarrow{MI}|=|3\overrightarrow{MJ}|\Leftrightarrow |\overrightarrow{MI}|=|\overrightarrow{MJ}|\)
Do đó tập hợp điểm M nằm trên đường trung trực của IJ, trong đó $I$ là điểm nằm giữa $AB$ sao cho \(IA=\frac{1}{2}IB\); $J$ là điểm nằm trên đường thẳng $BC$ sao cho $B$ nằm giữa $J$ và $C$ và \(JB=\frac{BC}{3}\)
Trước hết ta tìm điểm I sao cho \(2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\).
Nếu \(2\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\) \(\Leftrightarrow\overrightarrow{IA}=-\dfrac{1}{2}\overrightarrow{IB}\).
Vậy điểm I sao cho I thuộc đoạn AB và \(IA=\dfrac{1}{2}IB\).
Ta cũng tìm điểm K sao cho:\(4\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{0}\)
Nếu:
\(4\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{0}\)
\(\Leftrightarrow4\overrightarrow{KB}+\overrightarrow{CK}=\overrightarrow{0}\)\(\Leftrightarrow3\overrightarrow{KB}+\overrightarrow{CK}+\overrightarrow{KB}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{KB}+\overrightarrow{CB}=\overrightarrow{0}\)\(\Leftrightarrow3\overrightarrow{KB}=\overrightarrow{BC}\)\(\Leftrightarrow\overrightarrow{KB}=\dfrac{1}{3}\overrightarrow{BC}\).
Vậy điểm K thuộc đường thẳng BC sao cho B nằm giữa K và C và \(KB=\dfrac{1}{3}BC\).
Bây giờ:
\(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|4\overrightarrow{MK}-\overrightarrow{MK}\right|\)
\(\Leftrightarrow3\left|\overrightarrow{MI}\right|=3\left|\overrightarrow{MK}\right|\)
\(\Leftrightarrow3.MI=3.MK\)
\(\Leftrightarrow MI=MK\).
Vậy điểm M nằm trên đường trung trực của IK.