Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)
Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)
\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)
\(\Rightarrow4MP=0\Rightarrow M\equiv P\)
Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC
a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)
\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)
\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC
b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)
\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)
\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)
a: vecto MA+2vectoMB=vecto 0
=>vecto MA=-2vecto MB
=>M nằm giữa A và B và MA=2MB
c: vecto MA+vecto MB+vecto MC=vecto 0
nên M là trọng tâm của ΔABC
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{CM}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MA}+\overrightarrow{CB}\right|=\left|\overrightarrow{MA}+\overrightarrow{BC}\right|\)
\(\Leftrightarrow MA^2+BC^2+2\overrightarrow{MA}.\overrightarrow{CB}=MA^2+BC^2+2\overrightarrow{MA}.\overrightarrow{BC}\)
\(\Leftrightarrow\overrightarrow{MA}.\overrightarrow{BC}+\overrightarrow{MA}.\overrightarrow{BC}=0\)
\(\Leftrightarrow\overrightarrow{MA}.\overrightarrow{BC}=0\Leftrightarrow AM\perp BC\)
Tập hợp M là đường thẳng qua A vuông góc BC