K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

b: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét tứ giác ABEC có

I là trung điểm của AE
I là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

a: Xét ΔABI và ΔACI có

AB=AC
góc BAI=góc CAI

AI chung

=>ΔABI=ΔACI

b: ΔABI=ΔACI

=>góc AIB=góc AIC

c: Xét tứ giác ABEC có

I là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC

28 tháng 12 2018

a) Xét tam giác(TG) AIC và tam giác EIB:

IA=IE(gt)

góc AIC= góc EIB

IC=IB(gt)

=> TG AIC= TG EIB

b) Do TG AIC = TG EIB

=> góc IAC = góc IEB(2 góc tương ứng)

mà 2 góc này ở vị trí so le trong => AC // BE

c) Xét TG IAD và TG IEK:

IA=IE(gt)

góc IAD = góc IEK(2 góc so le trong)

AD=EK(gt)

=> TG IAD = TG IEK

=> góc AID = góc EIK

mà gócAID+gócDIE=180độ

=> gócEIK+gócDIE=180độ

=> D,I,K thẳng hàng

29 tháng 12 2018

CẢM ƠM BẠN NHA

29 tháng 11 2019

B A C H E I D K

\(a)\)Xét \(\Delta ABH\) và \(\Delta KIH\)  có:

\(HA=HK\left(gt\right)\)

\(\widehat{BHA}=\widehat{KHI}\left(đ^2\right)\)

\(HB=HI\left(gt\right)\)

\(\Rightarrow\Delta AHB=\Delta KIH\left(c.g.c\right)\)

\(b)\widehat{BAH}=\widehat{HKI}\left(\Delta AHB=\Delta KIH\right)\)

Mà hai góc ở vị trí so le trong

\(\Rightarrow AB//KI\)

\(c)AB\perp AC\)

\(AB//KI\)

\(\Rightarrow KI\perp AC\)

\(\Rightarrow IE\perp AC\)

\(\Rightarrow IK\equiv IE\)

\(\Rightarrow K,I,E\) thẳng hàng

\(d)\)Sai đề

18 tháng 12 2016

a)Xét ΔAMD và ΔCMB có :

góc AMB = góc CMD ( đối đỉnh)

AM = NC ( GT)

BM = MD ( GT)

--->ΔAMD = ΔCMB(c.g.c)

b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)

tạo ra hai góc so le trong bằng nhau

--->AD//BC

c)Xét ΔABC và ΔCDA có :

AC : cạnh chung

AD = BC (ΔAMD = ΔCMB)

góc CAD = góc ACB(ΔAMD = ΔCMB)

--->ΔABC = ΔCDA(c.g.c)

d)ta có AE + ED = AD

AF+ FC = BC

mà EF= BF; AD = BC

--->AE = FC

xét ΔAFC và ΔACE có :

AE = FC (CMT)

AC : cạnh chung

góc CAE = góc ACF (ΔAMD = ΔCMB)

--->ΔAFC = ΔCEA ( c.g.c)

--->góc AEC = góc AFC ( hai góc tương ứng)

--->góc AEC = góc AFC=90'

--->AF vuông góc với BC

Hỏi đáp Toán

18 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = CM (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)

b) t/g AMD = t/g CMB (câu a)

=> ADM = CBM (2 góc tương ứng)

Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)

c) t/g AMD = t/g CMB (câu a)

=> AD = BC (2 cạnh tương ứng)

Xét t/g ABC và t/g CDA có:

BC = AD (gt)

ACB = CAD (so le trong)

AC là cạnh chung

Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)

d) Có: AD = BC (câu c)

DE = BF (gt)

Suy ra AD - DE = BC - BF

=> AE = CF

Mà AE // CF do AD // BC (câu b)

Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)

Lại có: CE _|_ AD (gt) => AF _|_ AD

Mà BC // AD (câu b) => AF _|_ BC (đpcm)