K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2019

hệ thức lượng bạn j ơi

15 tháng 2 2019

Chúc bạn học giỏi!

Chúc bạn học tốt!

Chúc bạn học nhanh!

Chúc bạn học siêu!

24 tháng 2 2022

giúp vs

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

=>AB=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)

Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)

Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{DBC}=\widehat{ABD}\)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔADI cân tại A

 

23 tháng 5 2023

a) Ta có $\angle ABD = \angle EBD$ (vì BD là phân giác của góc $\angle ABC$), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD có cặp góc đồng nhất, nên chúng bằng nhau theo trường hợp góc - góc - góc của các tam giác đồng dạng. Do đó, ta có tam giác ABD = tam giác EBD.

b) Ta cần chứng minh AH song song với DE, và tam giác AID cân.

Ta có $\angle ABD = \angle EBD$ (theo phần a)), và $\angle ADB = \angle EDB = 90^\circ$ (vì DE vuông góc với BC). Vậy tam giác ABD và tam giác EBD đồng dạng. Do đó:

$$\frac{AB}{EB} = \frac{BD}{BD} = 1$$

$$\Rightarrow AB = EB$$

Mà $AH$ là đường cao của tam giác $ABC$, nên $AB = AH \cos(\widehat{BAC})$. Tương tự, ta có $EB = ED \cos(\widehat{BAC})$. Vậy:

$$\frac{AH}{ED} = \frac{AB}{EB} = 1$$

Do đó, $AH = ED$, hay $AH$ song song với $DE$.

Tiếp theo, ta chứng minh tam giác $AID$ cân. Ta có:

$$\angle AID = \angle BID - \angle BIA = \frac{1}{2} \angle ABC - \angle BAC$$

Mà $\angle ABC = 90^\circ + \angle BAC$, nên:

$$\angle AID = \frac{1}{2}(90^\circ + \angle BAC) - \angle BAC = \frac{1}{2}(90^\circ - \angle BAC)$$

Tương tự, ta có:

$$\angle ADI = \frac{1}{2} \angle ADB = \frac{1}{2} \cdot 90^\circ = 45^\circ$$

Vậy tam giác $AID$ có hai góc bằng nhau là $\angle AID$ và $\angle ADI$, nên đó là tam giác cân.

Vậy, ta đã chứng minh được rằng $AH$ song song với $DE$, và tam giác $AID$ cân.

23 tháng 5 2023

Xem lại KHỐI LỚP và cách áp dụng KIẾN THỨC như thế nào cho đúng với lứa tuổi.

4 tháng 12 2016

Xét $\triangle{ABH}$ và $\triangle{DEK}$

$AB = DE$ và $\widehat{ABH} = \widehat{DEK}$ ($\triangle{ABC} =\triangle{DEF}$)

$\widehat{AHB} = \widehat{DKE} ( = 90^\circ)$

$\implies \triangle{ABH} = \triangle{DEK}$ (ch-gn)

$\implies AH = DK$

4 tháng 12 2016

Bn ơi làm sao để dấu kí hiệu tren vậy dc ạ