Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: D nằm trên đường trung trực của BC
nên DB=DC
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD
=>ΔABC=ΔADC
b: ΔABC=ΔADC
=>góc DCA=góc BCA
Xét ΔCHA vuông tại H và ΔCKA vuông tại K có
CA chung
góc HCA=góc KCA
=>ΔCHA=ΔCKA
=>AH=AK
c: Xét ΔHAM vuông tại H và ΔKAN vuông tại K có
AH=AK
góc HAM=góc KAN
=>ΔHAM=ΔKAN
=>AM=AN và HM=KN
CH+HM=CM
CK+KN=CN
mà CH=CK và HM=KN
nên CM=CN
CM=CN
AM=AN
=>CA là trung trực của MN
=>C,A,I thẳng hàng
a: Xét ΔCAD có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAD cân tại C
b: Xet ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
=>ΔCAB=ΔCDB
a: Xét ΔCAD có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCAD cân tại C
b: Xet ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
=>ΔCAB=ΔCDB
A B C D H
a,Xét 2 tam giác vuông AHC và DHC có :
HC là cạnh chung
AH = HD ( gt )
=> tam giác AHC = tam giác DHC ( cv-cv )
=> CA = CD ( 2 cạnh tương ứng )
b,Xét tam giác ABC và tam giác DBC có :
CA = CD ( cmt )
Góc ACB = góc BCD ( do tam giác AHC = tam giác DHC )
BC là cạnh chung
=> tam giác ABC = tam giác DBC ( c-g-c )
c, ÁP dụng định lí Pi-ta-go cho tam giác AHB vuông tại H
\(AB^2=AH^2+HB^2\)
tam giác AHC vuông tại H
\(AC^2=AH^2+HC^2\)
=> \(AB^2+AC^2=2.AH^2+HB^2+HC^2\)
Ta có : \(AB^2=BD^2,AC^2=DC^2\)
=> \(BD^2+DC^2=2.AH^2+HB^2+HC^2\)
=> \(AB^2+AC^2+DB^2+DC^2=2.AH^2+HB^2+HC^2\)
=> \(AH^2+HB^2+HC^2=\dfrac{1}{2}\left(AB^2+AC^2+BD^2+DC^2\right)\)
a) Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
HA=HD(gt)
Do đó: ΔABH=ΔDBH(hai cạnh góc vuông)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)
mà tia BH nằm giữa hai tia BA,BD
nên BH là tia phân giác của \(\widehat{ABD}\)(đpcm)
b) Xét ΔACH vuông tại H và ΔDCH vuông tại H có
CH chung
AH=DH(gt)
Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)
Suy ra: CA=CD(hai cạnh tương ứng)
Ta có: ΔABH=ΔDBH(cmt)
nên BA=BD(hai cạnh tương ứng)
Xét ΔABC và ΔDBC có
BA=BD(cmt)
BC chung
CA=CD(cmt)
Do đó: ΔABC=ΔDBC(c-c-c)
A B C D H
+) Xét tam giác ABH vuông tại H và tam giác ADH vuông tại H có :
AH = DH (gt)
BH chung
=> tam giác ABH = tam giác ADH ( cạch huyền - góc nhọn )
=> AB = BD ( 2 cạch tương ứng )
+) Xét tam giác ACH vuông tại H và tam giác DCH vuông tại H có :
AH = DH (gt)
CH chung
=>tam giác ACH = tam giác DCH (cạch huyền - góc nhọn )
=> AC = CD (2 cạch tương ứng )
+) Xét tam giác ABC và tam giác DBC có :
BC chung
AC = CD ( cmt )
AB = BD ( cmt )
=> tam giác ABC = tam giác DBC ( c . c . c )
(CÒN GIẢ THIẾT - kẾT LUẬN BẠN TỰ LÀM NHA )