Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D là trung điểm của cạnh AB, ta có:
+ = 2
Đẳng thức đã cho trở thành:
2+ 2 =
=> + =
Đẳng thức này chứng tỏ M là trung điểm của CD
Ta xét tổng:
+ + + + + = = (1)
Mặt khác, ta có ABIJ, BCPQ và CARS là các hình bình hành nên:
=
=
=
=> ++ = + + = = (2)
Từ (1) và (2) suy ra : + + = (dpcm)
) Ta có = +
Nếu coi hình bình hành ABCd có = = và = = thì là độ dài đường chéo AC và = AB; = BC.
Ta lại có: AC = AB + BC
Đẳng thức xảy ra khi điểm B nằm giữa hai điểm A, C.
Vậy = + khi hai vectơ , cùng hướng.
b) Tương tự, là độ dài đường chéo AC
là độ dài đường chéo BD
= => AC = BD.
Hình bình hành ABCD có hai đường chéo bằng nhau nên nó là hình chữ nhật, ta có AD AB hay
a) Gọi theo thứ tự ∆1, ∆2, ∆3 là giá của các vectơ , ,
cùng phương với => ∆1 //∆3 ( hoặc ∆1 = ∆3 ) (1)
cùng phương với => ∆2 // ∆3 ( hoặc ∆2 = ∆3 ) (2)
Từ (1), (2) suy ra ∆1 // ∆2 ( hoặc ∆1 = ∆2 ), theo định nghĩa hai vectơ , cùng phương.
Vậy
a) đúng.
b) Đúng.
Trước hết ta có
= 3 => = 3 ( +)
=> = 3 + 3
=> – = 3
=> =
mà = – nên = (– )
Theo quy tắc 3 điểm, ta có
= + => = + –
=> = – + hay = – +
a) Ta có, theo quy tắc ba điểm của phép trừ:
= – (1)
Mặt khác, = (2)
Từ (1) và (2) suy ra:
= – .
b) Ta có : = – (1)
= (2)
Từ (1) và (2) cho ta:
= – .
c) Ta có :
– = (1)
– = (2)
= (3)
Từ (1), (2), (3) suy ra đpcm.
d) – + = ( – ) + = + = + ( vì = ) =
Ta có + =
= = a
Ta có: – = +.
Trên tia CB, ta dựng =
=> – = + =
Tam giác EAC vuông tại A và có : AC = a, CE = 2a , suy ra AE = a√3
Vậy = = a√3
Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.
Ta có = => =
= – = – = –
Theo quy tắc 3 điểm đối với tổng vec tơ:
= + => = – = (– ).
AK là trung tuyến thuộc cạnh BC nên
+ = 2 => – += 2
Từ đây ta có = + => = – – .
BM là trung tuyến thuộc đỉnh B nên
+ = 2 => – + = 2
=> = + .
Lời giải:
Ta có:
\(5\overrightarrow{SA}-2\overrightarrow{SB}-\overrightarrow{SC}=\overrightarrow{0}\)
\(\Leftrightarrow 2\overrightarrow{SA}+2(\overrightarrow{SA}-\overrightarrow{SB})+(\overrightarrow{SA}-\overrightarrow{SC})=\overrightarrow{0}\)
\(\Leftrightarrow 2\overrightarrow{SA}+2\overrightarrow{BA}+\overrightarrow{CA}=\overrightarrow{0}\)
\(\Leftrightarrow 2(\overrightarrow {AS}+\overrightarrow{AB})+\overrightarrow{AC}=\overrightarrow{0}\)
Như vậy, ta có thể xác định điểm $S$ như sau:
Trên tia đối của tia $AC$ lấy điểm $R$ sao cho \(AR=\frac{AC}{2}\)
Khi đó, \(\overrightarrow{AC},\overrightarrow{AR}\) là các tia ngược hướng nhau nên \(\overrightarrow{AC}+2\overrightarrow{AR}=\overrightarrow{0}\)
Lấy điểm $S$ thỏa mãn \(ASRB\) là hình bình hành, khi đó, theo tính chất hình bình hành thì \(\overrightarrow{AB}+\overrightarrow{AS}=\overrightarrow{AR}\)
Như vậy, \(2(\overrightarrow{AS}+\overrightarrow{AB})+\overrightarrow{AC}=2\overrightarrow{AR}+\overrightarrow{AC}=\overrightarrow{0}\) , thỏa mãn đktđb
Vậy điểm $S$ xác định như trên là điểm cần tìm.