Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
b: Ta có: H là trực tâm của ΔABC
nên AH⊥BC tại F
Xét ΔAEH vuông tại E và ΔAFB vuông tại F có
\(\widehat{EAH}\) chung
Do đó: ΔAEH\(\sim\)ΔAFB
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AH}{AB}\)
hay \(AE\cdot AB=AF\cdot AH\left(1\right)\)
Xét ΔADH vuông tại D và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔADH\(\sim\)ΔAFC
Suy ra: \(\dfrac{AD}{AF}=\dfrac{AH}{AC}\)
hay \(AD\cdot AC=AH\cdot AF\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AH\cdot AF=AD\cdot AC\)
\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C
\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh
\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)
Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC
\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK
\(\Rightarrow OM=\dfrac{1}{2}AH\)