K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

-Đường thẳng cố định :)

-Qua M,N kẻ các đường thẳng song song với BC cắt AH tại G,F.

-AI cắt BC tại H.

-Xét △MIG có: MG//NF.

\(\Rightarrow\dfrac{MI}{IN}=\dfrac{IG}{IF}\) (định lí Ta-let)

Mà \(MI=IN\) (I là trung điểm MN)

\(\Rightarrow\dfrac{IG}{IF}=\dfrac{MI}{MI}=1\Rightarrow IG=IF\).

-Xét △ABH có: MG//BH.

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AG}{AH}\) (định lí Ta-let) (1)

-Xét △ACH có: NF//CH.

\(\Rightarrow\dfrac{AN}{AC}=\dfrac{AF}{AH}\) (định lí Ta-let) (2)

-Từ (1), (2) suy ra: \(\dfrac{AG}{AH}+\dfrac{AF}{AH}=\dfrac{AM}{AB}+\dfrac{AN}{AC}=1\)

\(\Rightarrow AG+AF=AH\) mà \(AG+GH=AH\)

\(\Rightarrow AF=GH\) mà \(IG=IF\left(cmt\right)\)

\(\Rightarrow AF+IF=GH+IG\)

\(\Rightarrow AI=IH\) nên I là trung điểm AH.

-Hạ các đường thẳng vuông góc với BC qua A,I lần lượt tại J,K.

-Xét △AJK có: IK//AJ (do cùng vuông góc với BC).

\(\Rightarrow\dfrac{IK}{AJ}=\dfrac{IH}{AH}\) (định lí Ta-let)

Mà \(IH=\dfrac{1}{2}AH\) (H là trung điểm AI).

\(\Rightarrow\dfrac{IK}{AJ}=\dfrac{\dfrac{1}{2}AH}{AH}=\dfrac{1}{2}\)

-Vậy trung điểm I của MN chạy trên đường thẳng song song với BC và cách BC một khoảng cách là \(\dfrac{1}{2}AH\) (tức là I di chuyển trên đường trung bình của △ABC ứng với cạnh BC).

 

 

30 tháng 11 2017
cần nhanh
#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0

Đề thiếu rồi bạn

7 tháng 9 2019

Từ M kẻ đường song song với AN cắt BC tại K.Gọi I là giao điểm của MN với BC

Ta có: tam giác ABC cân tại Á nên góc B=góc C. Mà MK//AN => góc MKB =góc ABC => góc MKB=góc B=> MB=MK=CN

=> 180độ - góc MKB=180 độ - góc B=> góc MKI=góc ICN

MÀ góc KMN=góc INA (so le trong).

Vậy tam giác MKI bằng tam giác NIC(g.c.g)=>MI=NI(cạnh tương ứng)

=> I là trung điểm của MN

=>đpcm

7 tháng 9 2019

A B C I M N H K

Mình xét mỗi trường hợp như hình vẽ mà thôi, còn nếu điểm M nằm ngoài đoạn AB thì cũng tương tự nha

Vẽ MH,NK cùng vuông góc với BC

Ta dễ thấy MB=NC

Xét \(\Delta BMH\)\(\Delta CNK\)\(\widehat{BHM}=\widehat{CKN}=90;BM=CN\)\(;\widehat{MBH}=\widehat{NCK}\)(vì cùng bằng với\(\widehat{ACB}\))

\(\Rightarrow\Delta BMH=\Delta CNK\left(CH.GN\right)\Rightarrow MH=NK\)

Xét \(\Delta MHI\)\(\Delta NKI\)\(\widehat{HMI}=\widehat{KNI}\)(2 góc so le trong và HM song song với KN);

\(HM=KN;\widehat{MHI}=\widehat{NKI}=90\)

\(\Rightarrow\Delta MHI=\Delta NKI\left(G.C.G\right)\Rightarrow MI=NI\)

Vậy I là trung điểm MN mà I là giao điểm của MN và BC nên ta có điều phải chứng minh