Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △ADM△ADM và △CBM△CBM ta có :
MD = MB (gt)
ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)
AM = CM (gt)
=> △ADM=△CBM△ADM=△CBM (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét △AEN△AEN và △BCN△BCN ta có :
AN = BN (gt)
ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)
EN = CN (gt)
=> △AEN=△BCN△AEN=△BCN (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)
=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)
Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : △AEN=△BCN△AEN=△BCN (CMT)
=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)
=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh
Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)
Vì N là trung điểm AB và CE nên ACBE là hbh
Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)
\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)
Tham khảo
a) Xét △ADM△ADM và △CBM△CBM ta có :
MD = MB (gt)
ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)
AM = CM (gt)
=> △ADM=△CBM△ADM=△CBM (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét △AEN△AEN và △BCN△BCN ta có :
AN = BN (gt)
ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)
EN = CN (gt)
=> △AEN=△BCN△AEN=△BCN (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)
=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)
Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : △AEN=△BCN△AEN=△BCN (CMT)
=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)
=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)
a) Xét \(\Delta MBC\)và \(\Delta MDA\)có :
MB = MD(gt)
\(\widehat{BMC}=\widehat{DMA}\)(hai góc đối đỉnh)
MA = MC(gt)
=> \(\Delta MBC=\Delta MDA\left(c-g-c\right)\)
=> AD = BC(hai cạnh tương ứng) (1)
Xét \(\Delta MBC\)và \(\Delta NAE\)có :
MB = NA(gt)
\(\widehat{BMC}=\widehat{AME}\)(hai góc đối đỉnh)
MC = NE(gt)
=> \(\Delta MBC=\Delta NAE\left(c-g-c\right)\)
=> AE = BC (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra : AD = AE
b) Vì \(\Delta MBC=\Delta MDA\)nên \(\widehat{MCB}=\widehat{MAD}\)
Hai đường thẳng AD và BC tạo với AC hai góc so le trong bằng nhau \(\widehat{MCB}=\widehat{MAD}\)
=> AD//BC
Vì \(\Delta NAE=\Delta NBC\)nên \(\widehat{NAE}=\widehat{NBC}\)
Hai đường thẳng AE và BC tạo với AB hai góc so le trong bằng nhau \(\widehat{NAE}=\widehat{NBC}\)
=> AE//BC
Từ điểm A có hai đường thẳng AD và AE cùng song song với BC,theo tiên đề Ơ-clit về đường thẳng song song thì đường thẳng AD trùng với đường thẳng AE hay ba điểm A,E,D thẳng hàng.
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
a) Xét \(\bigtriangleup ADM\) và \(\bigtriangleup CBM\) ta có :
MD = MB (gt)
\(\widehat{M_1}=\widehat{M_2}\) (2 góc đối đỉnh)
AM = CM (gt)
=> \(\bigtriangleup ADM=\bigtriangleup CBM\) (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét \(\bigtriangleup AEN\) và \(\bigtriangleup BCN\) ta có :
AN = BN (gt)
\(\widehat{N_1}=\widehat{N_2}\) (2 góc đối đỉnh)
EN = CN (gt)
=> \(\bigtriangleup AEN=\bigtriangleup BCN\) (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : \(\bigtriangleup ADM=\bigtriangleup BCM\) (CMT)
=> \(\widehat{ADM}=\widehat{BCM}\) (2 góc tương ứng)
Mà \(\widehat{ADM}\) và \(\widehat{BCM}\) là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : \(\bigtriangleup AEN=\bigtriangleup BCN\) (CMT)
=> \(\widehat{AEN}=\widehat{BCN}\) (2 góc tương ứng)
=> Mà \(\widehat{AEN}\) và \(\widehat{BCN}\) là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => \(A,D,E\) thẳng hàng (theo tiên đề Ơ-clit)
Bạn tham khảo nha
https://olm.vn/hoi-dap/detail/97161219222.html
Hơi khác đó
Học tốt