K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC có 

M là trung điểm của BA

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC

hay AMNC là hình thang

21 tháng 2 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi H là trung điểm của AK

Trong  ∆ ADK ta có BH là đường trung bình của ∆ ADK.

⇒ BH // DK (tính chất đường trung bình của tam giác)

Hay BH // MK

Trong  ∆ BCH ta có M là trung điểm của BC

MK // BH

⇒ CK = HK

AK = AH + HK = 2HK

Suy ra: AK = 2 KC ( vì HK =KC)

NV
20 tháng 4 2023

Đặt cạnh hình vuông là a, ta có \(BD=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow BO=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\Rightarrow BO.BD=a^2\)

Xét 2 tam giác vuông AED và MAB có:

\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{MBA}=90^0\\\widehat{AED}=\widehat{MAB}\left(slt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AED\sim\Delta MAB\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{BM}=\dfrac{ED}{AB}\Rightarrow BM.ED=AD.AB=a^2\)

\(\Rightarrow BM.ED=BO.BD\)

Mà \(ED=BF\) (do \(BC=CD\) và \(CE=CF\))

\(\Rightarrow BM.BF=BO.BD\Rightarrow\dfrac{BM}{BD}=\dfrac{BO}{BF}\)

Xét hai tam giác BOM và BFD có:

\(\left\{{}\begin{matrix}\dfrac{BM}{BD}=\dfrac{BO}{BF}\\\widehat{OBM}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOM\sim\Delta BFD\left(c.g.c\right)\)

NV
20 tháng 4 2023

loading...

A B C D M K H

Từ B kẻ BH // AC

Ta có: AB = BD, BH // AC

=> BH là đường trung bình của \(\Delta ADK\)

=> \(BH=\dfrac{1}{2}AK\) (tính chất đường trung bình của tam giác)

Xét \(\Delta BHM\)\(\Delta CKM\) có:

\(\widehat{KMC}=\widehat{BHM}\) (2 góc đối đỉnh)

CM = MB (M trung điểm CB)

\(\widehat{MBH}=\widehat{CKM}\) (KC // BH)

=> \(\Delta BHM=\Delta CKM\left(g.c.g\right)\)

=> KC = BH (2 cạnh tương ứng)

\(BH=\dfrac{1}{2}AK\) (cmt)

=> \(KC=\dfrac{1}{2}AK\)

\(\Rightarrow AK=2KC\left(đpcm\right)\)

20 tháng 8 2017

A B K C H M D

Từ B kẻ BH // AC

Ta có: AB = BD, BH // AC

=> BH là đường trung bình của \(\Delta ADK\)

=>BH=\(\dfrac{1}{2}AK\)(tính chất đường trung bình của tam giác)

Xét \(\Delta BHM\)\(\Delta CKM\) có :

\(\widehat{KMC}=\widehat{BMH}\) ( hai góc đối đỉnh )

CM=MB (M la ftrung điểm của CB)

\(\widehat{MBH}=\widehat{CKM}\) ( KC//BH )

=>\(\widehat{BHM}=\widehat{CKM}\)

=>KC = BH

mà BH=1/2 AK

=>\(KC=\dfrac{1}{2}AK\)

=>AK=2KC

=> đcpm

21 tháng 8 2017

Qua B kẻ BH // AC , cắt DM tại H

Ta có {BH // AK ; AB = BD => BH là đường trung bình của tam giác ADK

=> AK=2BH (1)

Dễ dàng chứng minh được tam giác MKC = tam giác MBH (g.c.g)

=> BH = CK (2)

Từ (1) và (2) suy ra AK = 2CK 

21 tháng 8 2017

Qua B Kẻ BH // AC , cắt DM tại H

Ta có : BH // AK

             AB // BD

=> BH là đường trung bình của tam giác ADK

=> AK = 2 BH (1)

·    *   Xét tam giác MKC và tam giác MBH .

CÓ : BM = CM ( M là trung điểm của BC)

         Góc M1= Góc M2 ( 2 góc đối đỉnh)

        Góc MKC = MBH ( = 90 *)* là độ

=> Tam giác MKC = Tam giác MBH ( g. c . g)

=> BH = KC ( 2 cạnh tương ứng )(2)

Từ (1), (2) suy ra được AK = 2 KC