K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Bài 2:

A B C M N P

a) Xét tam giác BMC và tam giác MCN có:

Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN 

\(\Rightarrow S_{BMC}=S_{MCN}\)

\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)

Xét tam giác ABC và tam giác BMC có:

Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM

\(\Rightarrow S_{ABC}=S_{BMC}\)(2)

Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)

CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)

\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)

\(=7S_{ABC}\left(đpcm\right)\)

10 tháng 3 2020

Bài 3: 

Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:

\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)

Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)

\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)

\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)

\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)

\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)

23 tháng 4 2020

120 nhe

26 tháng 5 2019

Hình vẽ:

iXpGzDn.png

26 tháng 5 2019

Xét \(\Delta ABC\) và \(\Delta DIC\) có:

\(\widehat{ABC}=\widehat{DIC}=90^0\)

\(\widehat{ACB}\) chung.

\(\Rightarrow\Delta ABC~DIC\left(g.g\right)\)

b.

Hạ \(BK\perp AC\)

Do BI trung tuyến nên \(BI=IA=IC=\frac{AC}{2}=7,5\left(cm\right)\)

\(\Delta KCB~\Delta BCA\left(g.g\right)\Rightarrow BC^2=KC\cdot AB\Rightarrow KC=9,6\left(cm\right)\)

Áp dụng định lý Thales,ta có:

\(\frac{CI}{CK}=\frac{CD}{CB}=\frac{ID}{BK}=\frac{7,5}{9,6}\)

\(\Rightarrow CD=\frac{7,5\cdot CB}{9,6}=\frac{7,5\cdot12}{9,6}=9,375\left(cm\right)\)

Áp dụng định lý Pythagoras vào \(\Delta CBK\),ta có:

\(BK^2+KC^2=BC^2\)

\(\Rightarrow BK^2=BC^2-KC^2=51,84\left(cm\right)\)

\(\Rightarrow BK=7,2\left(cm\right)\)

\(ID=\frac{7,5\cdot BK}{9,6}=\frac{7,5\cdot7,2}{9,6}=5,625\left(cm\right)\)

c.

\(\Delta BDE~IDC\left(g.g\right)\Rightarrowđpcm\)

P/S:Bài j mà kỳ cục zậy ? câu c lại easy hơn nhiều câu b:((

13 tháng 5 2019

Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé

Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)

Qua E kẻ đường thẳng song song BF cắt AC tại K

Theo ta-lét ta có:

\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)

Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I

Theo talet ta có

\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)

=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)

=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)

Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)

=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)

Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)