K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE

=>ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔAHB=ΔAKC

=>AH=AK

Xét ΔADE có AH/AD=AK/AE

nên HK//DE

c:

góc HBD+góc D=90 độ

góc KCE+góc E=90 độ

mà góc D=góc E

nên góc HBD=góc KCE

góc MBC=góc HBD

góc MCB=góc KCE
mà góc HBD=góc KCE

nên góc MBC=góc MCB

=>ΔMBC cân tại M

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

=>ΔDAF=ΔDEC

=>DF=DC

=>ΔDFC cân tại D

c: Xét ΔBFC có

FE,CAlà đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc CF tại H

=>DH vuông góc CF tại H

mà ΔDFC cân tại D

nên H là trung điểm của FC

Xét ΔKFC có

CD là trung tuyến

CI=2/3CD

Do đó: I là trọng tâm

mà H là trung điểm của CF

nên K,I,H thẳng hàng

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔABD=ΔEBD)

\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AM=EC(Hai cạnh tương ứng)

c) Xét ΔBAE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)

mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)

và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)

nên \(\widehat{AEC}=\widehat{EAM}\)

a) Xét ΔCAH vuông tại H và ΔCDH vuông tại H có 

CH chung

AH=DH(gt)

Do đó: ΔCAH=ΔCDH(hai cạnh tương ứng)

Suy ra: CA=CD(Hai cạnh tương ứng)

Xét ΔCAD có CA=CD(cmt)

nên ΔCAD cân tại C(Định nghĩa tam giác cân)

b) Xét ΔBAH vuông tại H và ΔBDH vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔBAH=ΔBDH(hai cạnh góc vuông)

Suy ra: BA=BD(Hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

CA=CD(cmt)

BC chung

AB=DB(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)(hai góc tương ứng)

mà \(\widehat{BAC}=90^0\)(gt)

nên \(\widehat{BDC}=90^0\)

hay KD\(\perp\)CE(đpcm)

c) Xét ΔCAE vuông tại A và ΔCDK vuông tại D có 

CA=CD(cmt)

\(\widehat{ACE}=\widehat{DCK}\)(hai góc đối đỉnh)

Do đó: ΔCAE=ΔCDK(cạnh góc vuông-góc nhọn kề)

Suy ra: CE=CK(hai cạnh tương ứng)

Xét ΔCEK có CE=CK(cmt)

nên ΔCEK cân tại C(Định nghĩa tam giác cân)

d) Ta có: ΔCAE=ΔCDK(cmt)

nên AE=DK(hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BD+DK=BK(D nằm giữa B và K)

mà BA=BD(cmt)

và AE=DK(cmt)

nên BE=BK

Ta có: CE=CK(cmt)

nên C nằm trên đường trung trực của EK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BE=BK(cmt)

nên B nằm trên đường trung trực của EK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BC là đường trung trực của EK

hay BC\(\perp\)EK

mà BC\(\perp\)AD(cmt)

nên AD//EK(Định lí 1 từ vuông góc tới song song)

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó: ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc EBF chung

Do đó: ΔBEF=ΔBAC

=>BF=BC

c: ΔBAD=ΔBED
=>BA=BE và DA=DE

BA=BE

=>B nằm trên trung trực của AE(1)

DA=DE
=>D nằm trên trung trực của AE(2)

Từ (1), (2) suy ra BD là đường trung trực của AE

=>BD vuông góc AE

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

12 tháng 10 2021

Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy

a, C/m t/giác IEF cân 

b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF

c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH

Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM

31 tháng 7 2015

a ) Áp dụng Pytago vào tam giác vuông ABC ta được :

AB2+AC2 = BC2

=> 242 +322 = BC2

=> BC2 =1600

=> BC=40 (cm)

b, ta có: ΔABC vuông có ABCˆ=60o
ACBˆ=30o;DBCˆ=30o(BD là phân giác)
Xét ΔDBC có ACBˆ=DBCˆ=30o
 ΔDBC cân tại D
c, XétΔKBC có CA _|_KB; KM_|_BC
Mà CA cắt KM tại D D là trực tâm của ΔKBC
 BD_|_KC
d, ta có: M là trung điểm của BC (ΔDBC cân)
 E là trung điểm của AC 
 MC=12BC=20;EC=12AC=16
 EM=\(\sqrt[]{MC^2-EC^2}\)
=12

( L-IKE)