Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔBAC
Suy ra: AH\(\perp\)BC
Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay M,H,D thẳng hàng
Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên EM=BC/2(1)
Ta có: ΔFBC vuông tại F
mà FM là đường trung tuyến
nên FM=BC/2(2)
Từ (1) và (2) suy ra ME=MF
hay ΔEMF cân tại M
Xét tam giác KAD và HDB có:
DA=DB
^B=^ADK(đồng vị)
^DAK=^BDH(đvị)
=>∆KAD=∆HDB(g.c.g)
=>KA=DH
Mà KA//DH(gt)
=>ADHK là hbh (3)
Xét ∆HAB có:
DA=DB(cmt )=> DH là đường trung tuyến
^AHB=90(gt)
=>DH=1/2AB =>DA=DA (4)
Từ (3) và (4) =>ADHK là hình thoi
a) xét tứ giác ADME có
^A=^ADM=^AEM=90 (gt)
=>ADME là hcn
b)Xét tam giác ABC có:
MB=MC(gt)
ME//AB(ADME là hcn.cmt)
=>EA=EC=>EC=1/2AC (1)
Lại có: MD//AC (ADME là hcn.cmt)
=>DA=DB
=>DM là đường trung bình=>DM=1/2AC (2)
Từ (1) và (2)=>DM=EC
mà DM//AE(E thuộc AC)
=>MDEC là hbh
c) Nối H với E
Xét tam giác HAC có:
EA=EC(cmt)=>HE là đường trung tuyến
^AHC=90(gt)
=>HE=1/2AC
mà DM=1/2AC(cmt)
=>HE=DM
=>MHDE là htc.