Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link này nhé.
Câu hỏi của truong nhat linh - Toán lớp 7 - Học toán với OnlineMath
- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.
Ta cần chứng minh ∆ABC cân tại A.
Kéo dài AD một đoạn DA1 sao cho DA1 = AD.
- ∆ADB và ∆A1DC có
AD = DA1 (cách vẽ)
BD = CD (do D là trung điểm BC)
Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7
⇒ ∆ADB = ∆A1DC (c.g.c)
⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)
Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7
⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)
Từ (1) và (2) ⇒ AB = AC.
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
A B C M G
Gọi M là giao điểm của GA với BC.
Ta thấy \(S_{GAB}=S_{GAC}\) mà hai tam giác trên chung cạnh đáy GA nên chiều cao hạ từ B và C xuông GA là bằng nhau.
Vậy thì \(S_{GBM}=S_{GCM}\)
Từ đó suy ra BM = CM hay M là trung điểm BC.
Vậy AM là trung tuyến tam giác ABC.
Lại có \(S_{GBM}=\frac{S_{GBC}}{2}=\frac{S_{ABG}}{2}\Rightarrow\frac{AG}{GM}=2\)
Vậy nên G là trọng tâm tam giác ABC.