Cho tam giác ABC, đường trưng tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. G...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

giup mik gap voi :((((((((((((

a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.

12 tháng 6 2020

tự kẻ hình:3333

a) vì BE là phân giác của QBA=> B1=B2=QBA/2

vì BD là phân giác của ABC=> B3=B4=ABC/2

ta có EBD= B2+B3=QBA/2 +ABC/2= QBA+ABC/2= 180 độ/2=90 độ ( QBA kề bù với ABC)

trong tứ giác AEBD có EBD= 90 độ=> AEBD là HCN=> EBD=BDA=DAE=AEB= 90 độ

=> BEQ= 90 độ ( kề bù với AEB), BDP= 90 độ( kề bù với BDA)

=> BE vuông góc với AQ, BD vuông góc với AP

b)vì AEBD là hcn => AE=BD, 

xét tam giác BEQ và tam giác BEA có

B1=B2(gt)

BE chung

BEQ=BEA(=90 độ)

=> tam giác BEQ= tam gáic BEA(gcg)

=> AE=EQ ( hai cạnh tương ứng)

ta có DBP+EBQ= 90 độ( EBD= 90 độ)

VÌ EBQ vuông tại E=> EQB+EBQ= 90 độ

=> DBP=EQB (=90 độ-EBQ)

xét tam giác BEQ và tam giác PDB có

EQ=BD(=AE)

BEQ=PDB(=90 độ)

DBP=EQB(cmt)

=> tam giác BEQ= tam gáic PDB(gcg)

=> QB=PB ( hai cạnh tương ứng)

=> B là trung điểm của PQ

c) xét tam giác AED và tam giác DBA có 

AE=BD(cmt)

DAE=BDA(=90 độ)

AD chung

=> tam giác AED= tam giác DBA (cgc)

=> AB=DE( hai cạnh tương ứng)

11 tháng 10 2018

xét tam giác AEQ và tam giác BEC có

         EQ=EC

         AEQ=BEC đối đỉnh

         EA=EB

=> tam giác AEQ = tam giác BEC(c.g.g).

=> AQ=BC(cạnh tuognư ứng). (1)

Xét Tam giác AFP và tam giác CFB có

      AF=CF

     AFP=CFB đối đỉnh

     FB=FP

=>. tam giác AFB = tam giác CFB(c.g.c)

=> AP = BC (2)

từ (1) và (2) suy ra AP=AQ.

b) xét tam giác BEQ và tam giác AEC có

     EQ=EC

     BEQ=AEC đối đỉnh

     EB=EA

=> tam giác BEQ = tam giác AEC(c.g.c)

=> BQE=AEC(góc tương ứng) mà chúng ở vị trí so le trong nên BQ//AC.

xét tam giác PFC và BFA có:

FA=FC

AFB=CFP

BF=PF

=. tam giác PFC = BFA (c.g.c)

=> FAB = FCB(góc tương ứng)

mà chúng ở vị trí so le trong nên

CP//AB

cho tớ 1 tick nhé! ^^ cảm ơn

vì Tam gáic AEQ = BEC nên QAE=CBE, mà chugns ở vị trí so le trong nên AQ//BC.

=> QAB=CBA

xét tam giác ABQ và tam giác ABC có

     QAB=CAB

     AB chung

    CAB=QBA( AC//BQ)

vậy chúng bằng nhau(g.c.g)

AQB=ACB

mà AQB=CBR(đồng vị) từ hai điều này suy ra ACB=RBC

vì tam giác AFB=CFB nên A=C mà chúng ở vị trí so le trong nên AP//BC=>PAC=BCA

Xét tam giác ABC và PCA có

     BAC=PCA(AB//PC)

     AC chung

     PAC=BCA(cmt)

vậy chúng bằng nhau theo truognừ hợp g.c.g

=>ABC=CPA

mà CPA=RCP( đồng vị) từ hai điều này suy ra ABC=RCB.

Xét tam giác ABC và RCB có 

AQB=CBR

BC chung

CPA=RCP

vậy chúng bằng nhau theo truognừ hợp g.c.g

=> AB=RC;AC=RB(cạnh tuognư ứng)

* Vì AQ//BC,AP//BC, theo tiên đề Ơ-clit => ba điểm Q,A,P thẳng hàng

vì BC = AQ = AP nên BC = 1/2 QP

* Vì AC = BQ(cmt)

      AC=BR(cmt)

nên AC = 1/2 QR

vì theo đề cho ba điểm Q,B,R đã thằng hàng nên không cần chứng minh. ba điểm P,C,R cũng vậy.

* Vì AB=CP(cmt)

      AB=RC(cmt)

nên AB= 1/2 RP

ta có chu vi tam giác PQR = PQ + QR + RP =   \(\frac{1}{2}BC+\frac{1}{2}AC+\frac{1}{2}AB=\frac{1}{2}\left(AB+AC+BC\right)=\frac{1}{2}\)chu vi ABC điều phải chứng minh.

d) Xét tam giác  PQR có BQ=BR(cùng bằng AC)

                        CR=CP(cùng bằng AB)

                      AQ=AP(cmt) và Q,A,P thẳng hàng 

suy ra B,C và A lần lượt là trung điểm của QR, RP và PQ.

gọi giao điểm của QC và BP là H

tam giác PQR có QC, PB và RA là các đuognừ trung tuyến giao nhau tại H nên H là trọng tâm. Xong

vậy 3 đường này đồng quy

14 tháng 5 2015

a) xét tam giác AEQ và tam giác BEC có

         EQ=EC

         AEQ=BEC đối đỉnh

         EA=EB

=> tam giác AEQ = tam giác BEC(c.g.g).

=> AQ=BC(cạnh tuognư ứng). (1)

Xét Tam giác AFP và tam giác CFB có

      AF=CF

     AFP=CFB đối đỉnh

     FB=FP

=>. tam giác AFB = tam giác CFB(c.g.c)

=> AP = BC (2)

từ (1) và (2) suy ra AP=AQ.

b) xét tam giác BEQ và tam giác AEC có

     EQ=EC

     BEQ=AEC đối đỉnh

     EB=EA

=> tam giác BEQ = tam giác AEC(c.g.c)

=> BQE=AEC(góc tương ứng) mà chúng ở vị trí so le trong nên BQ//AC.

xét tam giác PFC và BFA có:

FA=FC

AFB=CFP

BF=PF

=. tam giác PFC = BFA (c.g.c)

=> FAB = FCB(góc tương ứng)

mà chúng ở vị trí so le trong nên

CP//AB

 

 

14 tháng 5 2015

Có thể loại đường trung bình nữa à Tuân Huỳnh Ngọc Minh???!!!

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
5 tháng 7 2019

Bạn tham khảo tại đây nhé: https://olm.vn/hoi-dap/detail/5877671740.html

Chúc bạn học tốt!

a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ

c)
xét tam giác BEQ và tam giác AEC có
EQ=EC
BEQ=AEC đối đỉnh
EB=EA
=> tam giác BEQ = tam giác AEC(c.g.c)
=> BQE=AEC (góc tương ứng) 
mà chúng ở vị trí so le trong nên BQ//AC.
xét tam giác PFC và BFA có:
FA=FC
AFB=CFP
BF=PF
=> tam giác PFC = BFA (c.g.c)
=> FAB = FCB(góc tương ứng)
mà chúng ở vị trí số le trong nên
CP//AB