Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN
nên G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm chung của BE và CF
=>BCEF là hình bình hành
=>BC=EF
b: Xét ΔFAE và ΔBGC có
FA=BG
AE=GC
FE=BC
=>ΔFAE=ΔBGC
a: Xét ΔAMC và ΔDMB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc CAB=90 độ
=>ABDC là hcn
=>góc ABD=90 độ
c: Xét ΔABC và ΔBAD có
BA chung
BC=AD
AC=BD
=>ΔABC=ΔBAD
d: AM=1/2AD=1/2BC
p/s: Bạn tự vẽ hình nha!! ^ ^
a) Xét \(\Delta\)AMC và \(\Delta\)DMB có:
AM = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(hai góc đối đỉnh).
BM = MC (gt)
=> Xét \(\Delta\)AMC = \(\Delta\)DMB (c.g.c)
b) Xét tứ giác ABCD có:
AM = MD (gt)
BM = MC (gt)
\(\widehat{BAC}\)= 90 độ
=> ABCD là hình bình hành (DHNB)
=> \(\Delta ABC=\Delta BAD\)(đpcm).
c) Vì \(\Delta\)ABC vuông tại A, đường trung tuyến AM => AM = 1/2 BC (tính chất đường trung tuyến bằng nửa cạnh huyền trong tam giác vuông).
_Kik nha!! ^ ^
a) Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền.
Áp dụng vào bài, ta có:
AM=1/2 BC.\(\Rightarrow\)M là trung điểm của BC => MB=MC=MA
Mà AM=MD => MD=MB=MC
=> tam giác BMD cân tại M
tam giác AMC cân tại M
tam giác AMB cân tại M
Xét tam giác BMD và tam giác AMC có:
BM=MC(chứng minh trên)
\(\widehat{BMD}=\widehat{AMC}\)(2 góc đối đỉnh)
AM=MD(giả thiết)
=> tam giác BMD=tam giác AMC (c-g-c)
=> \(\widehat{DBM}=\widehat{MAC}\)(2 góc tương ứng)
Mà \(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)
Mà \(\widehat{MAB}=\widehat{MBA}\)(do tam giác MAB cân tại M)
\(\Rightarrow\widehat{MAC}+\widehat{MBA}=90^0\)
\(\Rightarrow\widehat{MBD}+\widehat{DMB}=\widehat{ABD}=90^0\)
b) Xét tam giác ABC và tam giác BAD có:
AB-cạnh chung
\(\widehat{BAC}=\widehat{ABD}\left(=90^0\right)\)
AC=BD(do tam giác BMD=tam giác AMC)
=> tam giác ABC= tam giác BAD(c-g-c)
c)
Ta có: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh hyền nên:
AM=1/2 BC
a) Xét \(\Delta AMC\)và \(\Delta DMB\),ta có :
AM = DM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM(vì M là trung điểm của BC)
=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> \(\widehat{C}=\widehat{B_1}\)(hai góc tương ứng)
AC = BD(hai cạnh tương ứng)
Khi đó \(\widehat{ABD}=\widehat{B_1}+\widehat{B_2}=\widehat{B_1}+\widehat{C}=90^0\)
Vậy góc ABD = 900
b) Xét \(\Delta ABC\)và \(\Delta BAD\)có :
AB chung
AC = BD(cmt)
=> \(\Delta ABC=\Delta BAD\)(hai cạnh góc vuông)
c) Từ kết quả câu b)
=> BC = AD = 2AM <=> \(AM=\frac{1}{2}BC\)
Em kiểm tra lại đề bài nhé! Trên tia đối tia AM hay tia đối tia MA ?
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.