Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) MN // BC. Áp dụng định lí Ta-let, ta có :
\(\frac{BM}{AB}=\frac{CN}{AC}\)hay \(\frac{2}{8}=\frac{CN}{10}\)\(\Rightarrow CN=2,5\)
b) MN // BP ; NP // BM nên tứ giác MNPB là hình bình hành
\(\Rightarrow\Delta BMN=\Delta NPB\left(c.g.c\right)\)hay \(\Delta BMN\approx\Delta NPB\)
c) BM = 2 ; AB = 8 nên AM = 6
MNPB là hình bình hành nên NP = BM
Xét \(\Delta NPC\)và \(\Delta AMN\)có :
\(\widehat{PNC}=\widehat{MAN}\left(dv\right);\widehat{NPC}=\widehat{AMN}\left(=\widehat{ABC}\right)\)
\(\Rightarrow\)\(\Delta NPC\)\(\approx\)\(\Delta AMN\)( g.g )
\(\Rightarrow\)\(\frac{S_{NPC}}{S_{AMN}}=\left(\frac{NP}{AM}\right)^2=\left(\frac{BM}{AM}\right)^2=\left(\frac{2}{6}\right)^2=\frac{1}{9}\)
a
Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)
\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)
Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)
Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)
b
Hạ \(NH\perp BC;MG\perp BC\)
Áp dụng định lý Pythagoras vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)
Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND
Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )
Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.
Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:(
Cho tam giác ABC vg tại AAco đg ttrung tuyến AM.Gọi D là trung điểm củ AB E là đ dối xứng vs M qua D.
a)c/m AEBM là hinhhình thoi
b)gọi I là ttung đ của AM.c/m EIC thẳng hàng
c)tam giác ABC ccó themthêm điều kiện gì thì AEBM là hình
Cụ thể như sau:
Vẽ ��,��MH,NK vuông góc ��BC thì thấy ngay �(���)=�(���)S(BMC)=S(BNC) (�S là diện tích hình)
Suy ra �(���)=�(���)S(AMC)=S(ANB) hay �(���)�(���)=�(���)�(���)S(ABC)S(AMC)=S(ACB)S(ANB), nghĩa là có câu a.
Mà có câu a thì có câu b
Do M nằm giữa A và B nên: AB = AM + MB = 13 + 11 = 24 cm
Theo hệ quả định lí Ta let ta có:
Chọn đáp án C
Do MN // BC, theo định lí Ta - lét ta có :
\(\frac{AN}{AM}=\frac{NC}{MB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{AN}{AM}=\frac{NC}{MB}=\frac{AN+NC}{AM+MB}=\frac{24}{11+8}=\frac{24}{19}\)
\(\Rightarrow AN=\frac{24}{19}.11=\frac{264}{19}cm\)
\(NC=\frac{24}{19}.8=\frac{192}{19}cm\)
M N A B C I K a, Vì MN // BC nên \(\dfrac{AM}{AB}=\dfrac{MN}{BC}=\dfrac{3}{12}\Rightarrow MN=\dfrac{3}{12}BC=4\left(cm\right)\)( áp dụng định lí Talet)
b,Câu này bạn áp dụng định lí Ta-lét cho 2 tam giác ABI và ACI ta đc \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\) VÀ \(\dfrac{AN}{AC}=\dfrac{KN}{CI}\) mà \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\) và CI=BI nên MK=KN => K là TĐ của MN
Điểm M nằm giữa A và B nên: AB = AM + MB = 4 + 8 = 12cm
Áp dụng hệ quả định lí Ta let ta có;
Chọn đáp án C