Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^BHA = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
\(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrow AB^2=BH.BC\)
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g )
\(\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH.BC=AB.AC\)
b, Vì tam giác AHC ~ tam giác BAC ( cmt )
\(\frac{AC}{BC}=\frac{HC}{AC}\Rightarrow AC^2=HC.BC\)
Trả lời:
A B C H
a, Xét tam giác ABC và tam giác HBA có:
^B chung
^BAC = ^BHA = 90o
=> tam giác ABC ~ tam giác HBA ( g-g )
=> \(\frac{AB}{BH}=\frac{BC}{AB}\) ( tỉ số đồng dạng )
=> AB2 = BH.BC (đpcm)
Ta có: \(S_{ABC}=\frac{1}{2}.AB.AC\)
Lại có: \(S_{ABC}=\frac{1}{2}AH.BC\)
=> \(\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\)
=> AB.AC = AH.BC (đpcm)
b, Xét tam giác ABC và tam giác HAC có:
^C chung
^AHC = ^BAC = 90o
=> tam giác ABC ~ tam giác HAC ( g-g )
=> \(\frac{AC}{CH}=\frac{CB}{AC}\) ( tỉ số đồng dạng )
=> AC2 = CH.CB (đpcm)
A B C 21 28 35 H D
a, mình vẽ minh họa thôi nhá
Ta có : \(BC^2=AB^2+AC^2\Rightarrow1225=441+784=1225\)* đúng *
Vậy tam giác ABC vuông tại A theo Pytago đảo
b, Xét tam giác ABH và tam giác CBA ta có :
^AHB = ^CAB = 900
^B chung
Vậy tam giác ABH ~ tam giác CBA ( g.g ) (*)
(*) \(\Rightarrow\frac{AB}{BC}=\frac{AH}{AC}\)( tỉ số đồng dạng )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm
(*) \(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\)( tỉ số đồng dạng )
\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{63}{5}\)cm
Trả lời:
a, \(\left(xy+4\right)^2-4\left(x+y\right)^2\)
\(=\left(xy+4\right)^2-\left[2\left(x+y\right)\right]^2\)
\(=\left(xy+4\right)^2-\left(2x+2y\right)^2\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
\(=\left[\left(xy-2x\right)-\left(2y-4\right)\right]\left[\left(xy+2x\right)+\left(2y+4\right)\right]\)
\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)
\(=\left(y-2\right)\left(x-2\right)\left(y+2\right)\left(x+2\right)\)
b, \(2x-\sqrt{x}=2.\sqrt{x}.\sqrt{x}-\sqrt{x}=\sqrt{x}.\left(2\sqrt{x}-1\right)\)
`a,`
`(x+y)^3-1=(x+y)^3-1^3=(x+y-1)[(x+y)^2 +x+y +1] =(x+y-1)(x^2 +2xy+y^2 +x+y+1]`
`b,`
`100x^2 - (x^2 +25)^2=(10x)^2-(x^2 +25)^2=(10x-x^2-25)(10x +x^2 +25) = -(x-5)^2 (x+5)^2`
a) \(\left(x+y\right)^3-1\)
\(=\left(x+y\right)^3-1^3\)
\(=[\left(x+y\right)-1][\left(x+y\right)^2+\left(x+y\right)1+1^2]\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)\)
b) \(100x^2-\left(x^2+25\right)^2\)
\(=\left(10x\right)^2-\left(x^2+25\right)^2\)
\(=[10x-\left(x^2+25\right)][10x+\left(x^2+25\right)]\)
\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)
\(=\left(-x^2+10x-25\right)\left(x^2+10x+25\right)\)
\(=-\left(x^2-10x+25\right)\left(x^2+10x+25\right)\)
\(=-\left(x-5\right)^2.\left(x+5\right)^2\)