Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhé!
a) Xét tam giác ABC và Tam giác ADE
Có: AD=AB(gt)
AE=AC(gt)
góc BAC= góc DAE( 2 góc đối đỉnh)
Vậy tam giác ABC = tam giác ADE (c-g-c)
b) Ta có tam giác ABC= tam giác ADE( chứng minh trên)
Suy ra góc EBA=góc ADC(2 góc tương ứng)
Vậy BE song song với DC ( có 2 góc so le trong bằng nhau)
A E D B C 1 2 H K
a) Ta có : EC và DB là cặp góc đối đỉnh => góc A1 = góc A2
Xét tam giác ADE và tam giác ABC có :
EA = AC (gt)
BA = AD (gt)
góc A1 = góc A2 ( CM trên )
=> \(\Delta ADE=\Delta ABC\) (c.g.c) (đpcm)
b) Vì \(\Delta ADE=\Delta ABC\) => góc AED = góc ACB ( cặp góc tương ứng )
Mà hai góc này là cặp góc so le trong
=> BE // CD (đpcm)
c) Vì \(\Delta ADE=\Delta ABC\) => ED = BC ( cặp cạnh tương ứng )
Vì H là trung điểm của BC => BH = HC = \(\frac{BC}{2}\)=> HC = \(\frac{ED}{2}\)(1)
Vì K là trung điểm của ED => EK = KD = \(\frac{ED}{2}\)(2)
Từ (1) và (2) => HC = EK
Xét tam giác AKE và tam giác AHC có :
góc AEK = ACH (CM ở b)
AE = AC (gt)
EK = HC (CM trên)
=> \(\Delta AKE=\Delta AHC\) (c.g.c)
=> AK = AH (cặp cạnh tương ứng)
=> A là trung điểm của HK (đpcm)
Tick mk nha!!!
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
b: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: CD//AB và CD=AB
Vì \(\Delta ABC\\\) là tam giác đều nên \(\widehat{ABC}=\widehat{ACB}=60^o\) ⇒\(\widehat{ABD}=\widehat{ACE}=120^o\)
\(\Delta ABD\) có AB = BD ⇒ \(\Delta ABD\) là tam giác cân nên \(\widehat{BAD}=\widehat{BDA}=30^o\)
Tương tự ta có \(\widehat{CAE}=\widehat{CEA}=30^o\)
Vậy \(\widehat{DAE}=60^o+30^0+30^o=120\)
Số đo các góc của \(\Delta ADE\) là: \(\widehat{ADE}=30^o;\widehat{AED}=30^o;\widehat{DEA}=120^o\)