Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi câu a ko có dữ liệu thì tính sao được còn câu b đợi mk tí mk làm cho
b) vì MD=MB ==> tam giác BDM cân tại M
mà góc BMD=góc ACB=60 độ
do đó tam giác BDM đều ==>DBM=60 độ
ta có ABD+DBC=60 độ
MBC+DBC=60 độ
==> góc ABD= CBM
DO ĐÓ TAM GIÁC ABD= tam giác CBM(c.g.c)
==> AD=CM ==> AD+DM=BM+MC=AM
==> ĐIỀU CẦN CHỨNG MINH
Để căn2.MA+MB+MC nhỏ nhất thì MA+MB+MC nhỏ nhất
Để MA+MB+MC nhỏ nhất thì A trùng với M.Khi đó căn2.MA+MC+MB=7
Ta có: ∆ ABD = ∆ CBM (cmt)
suy ra: AD = CM
Ta có: DM = BM ( tam giác MBD đều )
mà AM = AD + DM
suy ra: MA = MC + MB
a, Trên AM lấy điểm E sao cho ME = MB
Có : góc BME = góc BCA = 60 độ
=> tam giác EMB đều => EB = MB và góc EMB = 60 độ
Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ
Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ
=> góc ABE = góc CBM
=> tam giác AEB = tam giác CMB (c.g.c)
=> AE = CM
=> AM = AE + EM = CM+BM
b, Theo câu a có tam giác AEB = tam giác CMB
=> góc EAB = góc MCB
=> tam giác MDC đồng dạng tam giác MBA (g.g)
=> MC/MA = MD/MB
=> MD.MA=MB.MC
Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1
Chọn đáp án B.
Vì H là trực tâm của tam giác ABC nên A H ⊥ B C
Lại có tam giác ABC là tam giác cân tại A nên đường cao AH đồng thời là đường trung trực.
Suy ra: H nằm trên đường trung trực của đoạn thẳng BC.
Phần thuận:
Vẽ △MCF đều
Ta có \(\widehat{ACM}+\widehat{MCB}=60^0\)
\(\widehat{MCB}+\widehat{FCB}=60^0\)
Suy ra \(\widehat{ACM}=\widehat{FCB}\)
Xét △AMC và △BFC có
\(\widehat{ACM}=\widehat{FCB}\)(cmt)
AC=BC
MC=CF
Suy ra △AMC = △BFC\(\Rightarrow AM=BF\Rightarrow AM^2=BF^2\)
Mà \(AM^2=BM^2+MC^2=BM^2+MF^2\)
Suy ra \(BF^2=BM^2+MF^2\)⇒△MBF vuông tại M\(\Rightarrow\widehat{BMF}=90^0\Rightarrow\widehat{BMC}=150^0\)
Vậy M thuộc cung chứa góc \(150^0\)dựng trên BC
Giới hạn: Vì M nằm trong △ABC nên M thuộc cung chứa góc \(150^0\)dựng trên BC (phần nằm trong △ABC)