K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

Phần thuận:

Vẽ △MCF đều

Ta có \(\widehat{ACM}+\widehat{MCB}=60^0\)

\(\widehat{MCB}+\widehat{FCB}=60^0\)

Suy ra \(\widehat{ACM}=\widehat{FCB}\)

Xét △AMC và △BFC có

\(\widehat{ACM}=\widehat{FCB}\)(cmt)

AC=BC

MC=CF

Suy ra △AMC = △BFC\(\Rightarrow AM=BF\Rightarrow AM^2=BF^2\)

\(AM^2=BM^2+MC^2=BM^2+MF^2\)

Suy ra \(BF^2=BM^2+MF^2\)⇒△MBF vuông tại M\(\Rightarrow\widehat{BMF}=90^0\Rightarrow\widehat{BMC}=150^0\)

Vậy M thuộc cung chứa góc \(150^0\)dựng trên BC

Giới hạn: Vì M nằm trong △ABC nên M thuộc cung chứa góc \(150^0\)dựng trên BC (phần nằm trong △ABC)

14 tháng 2 2016

bạn ơi câu a ko có dữ liệu thì tính sao được còn câu b đợi mk tí mk làm cho

14 tháng 2 2016

b) vì MD=MB ==> tam giác BDM cân tại M

mà góc BMD=góc ACB=60 độ

do đó tam giác BDM đều ==>DBM=60 độ

ta có ABD+DBC=60 độ

      MBC+DBC=60 độ

==> góc ABD= CBM

DO ĐÓ TAM GIÁC ABD= tam giác CBM(c.g.c)

==> AD=CM ==> AD+DM=BM+MC=AM

==> ĐIỀU CẦN CHỨNG MINH

 

8 tháng 6 2015

khó quá , mk giải hk ra ak ^^

24 tháng 4 2017

Lớp lớn khó quá !

7 tháng 4 2016

Để căn2.MA+MB+MC nhỏ nhất thì MA+MB+MC nhỏ nhất

Để MA+MB+MC nhỏ nhất thì A trùng với M.Khi đó căn2.MA+MC+MB=7

Cảm ơn bạn

5 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: ABD = CBM (cmt)

suy ra: AD = CM

Ta có: DM = BM ( tam giác MBD đều )

mà AM = AD + DM

suy ra: MA = MC + MB

14 tháng 1 2018

a, Trên AM lấy điểm E sao cho ME = MB

Có : góc BME = góc BCA = 60 độ

=> tam giác EMB đều => EB = MB và góc EMB = 60 độ

Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ

Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ

=> góc ABE = góc CBM

=> tam giác AEB = tam giác CMB (c.g.c)

=> AE = CM

=> AM = AE + EM = CM+BM

14 tháng 1 2018

b, Theo câu a có tam giác AEB = tam giác CMB

=> góc EAB = góc MCB

=> tam giác MDC đồng dạng tam giác MBA (g.g)

=> MC/MA = MD/MB

=> MD.MA=MB.MC

Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1

9 tháng 8 2017

Chọn đáp án B.

Vì H là trực tâm của tam giác ABC nên  A H   ⊥   B C

Lại có tam giác ABC là tam giác cân tại A nên đường cao AH đồng thời là đường trung trực.

Suy ra: H nằm trên đường trung trực của đoạn thẳng BC.