K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a, Trên AM lấy điểm E sao cho ME = MB

Có : góc BME = góc BCA = 60 độ

=> tam giác EMB đều => EB = MB và góc EMB = 60 độ

Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ

Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ

=> góc ABE = góc CBM

=> tam giác AEB = tam giác CMB (c.g.c)

=> AE = CM

=> AM = AE + EM = CM+BM

14 tháng 1 2018

b, Theo câu a có tam giác AEB = tam giác CMB

=> góc EAB = góc MCB

=> tam giác MDC đồng dạng tam giác MBA (g.g)

=> MC/MA = MD/MB

=> MD.MA=MB.MC

Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1

5 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: ABD = CBM (cmt)

suy ra: AD = CM

Ta có: DM = BM ( tam giác MBD đều )

mà AM = AD + DM

suy ra: MA = MC + MB

24 tháng 2 2019

A B C M D E

a) Xét \(\Delta MBD\)và \(\Delta MAC\)

có: \(\widehat{MAC}=\widehat{MBD}\)( cùng chắn cung MC)

\(\widehat{BMD}=\widehat{AMC}\)( cung AB=cung AC vì AB=AC)

=>  \(\Delta MBD\)\(\Delta MAC\)

b) Từ câu a)_

=> \(\frac{MB}{MA}=\frac{BD}{AC}\)(1)

\(\frac{MC}{MA}=\frac{MD}{MB}\)(2)

Dễ dàng chứng minh đc:

\(\Delta BDM~\Delta ADC\)

=> \(\frac{MD}{MB}=\frac{DC}{AC}\)(3)

Từ (1), (2), (3)

=> \(\frac{MB}{MA}+\frac{MC}{MA}=\frac{BD}{AC}+\frac{CD}{AC}=\frac{BC}{AC}\)\(=\frac{BC}{AB}\)

c) Lấy điểm E thuộc đoạn