Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. trong tam giác đều đường cao cũng là đường trung tuyến nen:
M;N lần lượt là trung điểm của ac và ab
+
=> AM LÀ dường trung bình của tam giác abc
=>AM//BC hay MNBC là hình thang 1
Do AB là tam giác đều nên BN=CM 2
TỪ 1 và 2 suy ra MNBC LÀ HÌNH THANG CÂN ( đpcm)
b.
do tam giác ABC dều nên AB=BC=AC=24:3=8 dm
=> MN=4 ; MB=4; NC=4
CHU VI HÌNH THANG LÀ:
4+4+4+8=20(dm)
a) Xét ∆ vuông ANC và ∆ vuông AMB ta có :
AB = AC ( ∆ABC đều)
A chung
=> ∆ANC = ∆AMB (ch-gn)
=> AN = AM
=> ∆AMN cân tại A
=> ANM = \(\frac{180°-BAC}{2}\)= \(\frac{180°-60°}{2}\)=\(60°\)
Mà ∆ABC đều
=> ABC = 60°
=> ABC = ANM = 60°
Mà 2 góc này ở vị trí đồng vị
=> NM//BC
=> NMCB là hình thang
Mà ∆ABC đều
=> BAC = ABC = ACB
=> NMCB là hình thang cân
b) Vì chu vi ∆ABC = 24dm
=> AB = AC = BC = 8cm
Vì ∆AMN cân tại A (cmt)
=> ∆AMN đều
=> MN = AM = AN
Mà BN là đường cao ∆ đều ABC
=> BN đồng thời là trung tuyến ∆ABC
=> AN = \(\frac{1}{2}Ac\)
=> MN = AN = \(\frac{1}{2}AC\:=\:\frac{8}{2}=4=NC\)
Vì BMNC là hình thang cân
=> BM = NC = AN = 4dm
Chu vi hình thang BMNC là :
4 + 4 + 4 + 8 = 20dm
a,Xét tam giác ABN và tam giác ACM có:
góc A chung
AB=AC(tam giác ABC đều)
góc ANB=góc AMC(=90*)
=>tam giác ABN =tam giác ACM(g-c-g)
=>AN=AM(2 cạnh tương ứng)
=>tam giác ANM cân tại A
=>góc ANM=\(\frac{180-gócA}{2}\left(1\right)\)
Có:tam giác ABC đều
=>góc ACB=\(\frac{180-gócA}{2}\left(2\right)\)
Từ (1) và (2)=>góc ANM =góc ACB(=\(\frac{180-gócA}{2}\))
mà hai góc này ở vị trí đồng vị
=>MN//BC
=>NMBC là hình thang
mà BN=CM(tam giác ABN=tam giác ACM)
=>NMBC là hình thang cân
a: Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
mà AB=AC
nên AM=AN
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
a) Ta có: MN//BC(gt)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ABC}\\\widehat{ANM}=\widehat{ACB}\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
=> Tam giác AMN cân tại A
b) Xét tứ giác BMNC có:
MN//BC
\(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
=> BMNC là hthang cân
c) Ta có: BMNC là hthang cân
=> BN=MC
Tam giác ABC đều.
Đường cao BN cũng là đường trung tuyến => NC=NA
Trương tự ta có đường trung tuyến CM => MA=MB
Xét tam giác ABC có: NC=NA (cmt)
MA=MB (cmt)
=> MN là đường trung bình=> MN//BC
Do đó BMNC là hình thang (1)
Lại có góc B= góc C (2)
=> BMNC là hình thang cân (đpcm)