Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn lên đây nè
https://vi.wikipedia.org/wiki/Tam_gi%C3%A1c_%C4%91%E1%BB%81u
Bài giải :
_ Gọi chu vi là P .
Ta có : \(P\)Tứ giác \(ABCD=\)\(AB+BC+CD+DA=66.\)
\(P\)Tam giác \(ABC\)\(=AB+BC+CA=56.\)
\(P\)Tam giác \(ACD=\)\(AC+CD+CA=60.\)
\(\Rightarrow P\)Tam giác \(ABC+ADC\)
\(\rightarrow\left(AB+BC+CD+DA\right)\)\(+2\times AC\)
\(=66+2\times AC\)
\(=56+60\)
\(=116.\)
\(\Rightarrow2\times AC\)
\(=116-66\)
\(=50.\)
\(\Rightarrow AC=50\div2\)
\(=25.\)
a. trong tam giác đều đường cao cũng là đường trung tuyến nen:
M;N lần lượt là trung điểm của ac và ab
+
=> AM LÀ dường trung bình của tam giác abc
=>AM//BC hay MNBC là hình thang 1
Do AB là tam giác đều nên BN=CM 2
TỪ 1 và 2 suy ra MNBC LÀ HÌNH THANG CÂN ( đpcm)
b.
do tam giác ABC dều nên AB=BC=AC=24:3=8 dm
=> MN=4 ; MB=4; NC=4
CHU VI HÌNH THANG LÀ:
4+4+4+8=20(dm)
A B C H K 60
a) Xét \(\Delta ABC\)đều có H là chân đường vuông góc hạ tự B xuống cạnh đáy AC
\(\Rightarrow\)H cũng là chân đường trung tuyến hạ từ B xuống đáy AC
\(\Rightarrow AH=HC\)
Tương tự \(\Rightarrow AK=KB\)
\(\Rightarrow\)HK là đường trung bính \(\Delta ABC\)
\(\Rightarrow HK//BC\)\(\Rightarrow\)HKCB là hình thang ( 1 )
Lại có \(\Delta ABC\)đều
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(=60^o\right)\)( 2 )
Từ (1) và (2) \(\Rightarrow\)BCHK là hình thang cân
b) Xét \(\Delta ABC\)đều \(\Rightarrow AB=AC=BC=\frac{24}{3}=8\left(cm\right)\)
Ta có \(AK=\frac{1}{2}AB;AH=\frac{1}{2}AC\)
Mà AB = AC \(\Rightarrow AK=AH\)
Lại có \(\widehat{KAH}=60^o\)
\(\Rightarrow\Delta AHK\)đều
Mà \(AK=\frac{1}{2}AB\Rightarrow AK=\frac{1}{2}\times8=4\left(cm\right)\)
\(\Rightarrow AK=AH=HK=4\left(cm\right)\)
\(C_{BCHK}=KH+HC+BC+BK\)
\(\Leftrightarrow C_{BCHK}=KH+AH+BC+AK\)
\(\Leftrightarrow C_{BCHK}=4+4+8+4\)
\(\Leftrightarrow C_{BCHK}=20\left(cm\right)\)
Vậy ...
a) Ta thấy: \(AB.AC=BC.AH\)
\(\Leftrightarrow AB^2.AC^2=BC^2.AH^2\)
\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{BC^2}\)
\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{AB^2+AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Ta có: \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB:AC=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)
Áp dụng công thức trên: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{15^2}=\frac{1}{\frac{25}{49}AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{49}{25}.\frac{1}{AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{1}{AC^2}\left(\frac{49}{25}+1\right)\)
\(\Rightarrow\frac{1}{225}=\frac{1}{AC^2}.\frac{74}{25}\Rightarrow\frac{1}{AC^2}=\frac{1}{225}.\frac{25}{74}=\frac{1}{666}\Rightarrow AC^2=666\Rightarrow AC=\sqrt{666}=3\sqrt{74}cm\)
Do đó: \(AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}cm\)
Xét tam giác ABH có: \(AH^2+BH^2=AB^2\Leftrightarrow15^2+BH^2=\left(\frac{15\sqrt{74}}{7}\right)^2\Leftrightarrow BH^2=\frac{16650}{49}-225=\frac{5625}{49}\)
\(\Rightarrow BH=\frac{\sqrt{5625}}{\sqrt{49}}=\frac{75}{7}cm\)
Xét tam giác ACH có: \(AH^2+HC^2=AC^2\Leftrightarrow15^2+HC^2=666\Leftrightarrow HC^2=666-225=441\)
\(\Rightarrow HC=\sqrt{441}=21cm\)
Vậy: \(BH=\frac{75}{7}cm\) và \(HC=21cm\)
b) Chu vi tam giác ABC là: \(AB+AC+BC=\frac{15\sqrt{74}}{7}+3\sqrt{74}+21+\frac{75}{7}\approx76cm\)
A B C H 15 cm
Vì tam giác ABC vuông tại A => góc B + góc C = 90o
Vì tam giác HAC vuông tại H => góc HAC + góc C = 90o
=> góc HAC = góc B
Xét tam giác HAC và tam giác HBA có:
góc HAC = góc B (cmt)
góc AHC = góc AHB (=90o)
=> tam giác HAC đồng dạng với tam giác HBA (TH3)
=> \(\frac{AC}{AB}=\frac{AH}{BH}=\frac{HC}{AH}=\frac{7}{5}\)
=> \(HC=15.\frac{7}{5}=21\left(cm\right);HB=15.\frac{5}{7}=\frac{75}{7}\left(cm\right)\)
Sau đó tính AB; AC; BC. Ngại là lắm, làm nốt nhá ._.
a) Xét ∆ vuông ANC và ∆ vuông AMB ta có :
AB = AC ( ∆ABC đều)
A chung
=> ∆ANC = ∆AMB (ch-gn)
=> AN = AM
=> ∆AMN cân tại A
=> ANM = \(\frac{180°-BAC}{2}\)= \(\frac{180°-60°}{2}\)=\(60°\)
Mà ∆ABC đều
=> ABC = 60°
=> ABC = ANM = 60°
Mà 2 góc này ở vị trí đồng vị
=> NM//BC
=> NMCB là hình thang
Mà ∆ABC đều
=> BAC = ABC = ACB
=> NMCB là hình thang cân
b) Vì chu vi ∆ABC = 24dm
=> AB = AC = BC = 8cm
Vì ∆AMN cân tại A (cmt)
=> ∆AMN đều
=> MN = AM = AN
Mà BN là đường cao ∆ đều ABC
=> BN đồng thời là trung tuyến ∆ABC
=> AN = \(\frac{1}{2}Ac\)
=> MN = AN = \(\frac{1}{2}AC\:=\:\frac{8}{2}=4=NC\)
Vì BMNC là hình thang cân
=> BM = NC = AN = 4dm
Chu vi hình thang BMNC là :
4 + 4 + 4 + 8 = 20dm
CÔNG THỨC TÍNH CHU VI TAM GIÁC, CÁCH TÍNH CHU VI TAM GIÁC ĐÚNG NHẤT
Công thức tính chu vi tam giác, cách tính chu vi tam giác cũng được phân chia theo cách tính diện tích tam giác cân, vuông, đều. Bởi mỗi dạng tam giác đều có một cách tính chu vi khác nhau.
- Công Thức Tính Chu Vi Tam Giác Thường
Công thức tính chu vi tam giác thường áp dụng cho tất cả các dạng tam giác thường phổ biến với các cạnh thay đổi.
P = A+B+C
Trong đó:
+ a và b và c : Ba cạnh của tam giác thường
- Ví Dụ: Cho một tam giác thường ABC có chiều dài các cạnh lần lượt là 4,5,6 cm. Hỏi diện tích tam giác thường bằng bao nhiêu?
cach tinh chu vi tam giac
Dựa theo công thức, chúng ta có thể tính chu vi tam giác như sau:
Ta có: a=AB=4 cm, b=AC=5 cm, c=BC=6cm
Suy ra: P = a+b+c = 4 + 5 + 6 = 15 cm
Như vậy chu vi tam giác ABC bằng 15 cm.
- Công Thức Tính Chu Vi Tam Giác Vuông
Công thức tính chu vi tam giác vuông áp dụng cho các dạng tam giác có đường nối vuông góc giữa đỉnh và đáy của một tam giác.
P = A+B+H
Trong đó:
+ a và b : Hai cạnh của tam giác vuông
+ h : chiều cao nối từ đỉnh xuống đáy của một tam giác.
- Ví Dụ: Có một tam giác vuông với chiều dài hai cạnh AC và BC lần lượt là 5 và 6cm. Chiều dài cạnh AB là 7cm. Hỏi chu vi tam giác vuông ABC bằng bao nhiêu.
huong dan tnh chu vi tam giac
Dựa theo công thức tính chu vi tam giác vuông, ta tính chu vi tam giac vuông như sau:
Ta có: a = AC = 6cm, b = BC = 5cm và h = AB = 4cm
Suy ra P = a+b+h = 6 + 5 + 4 = 15 cm
- Công Thức Tính Chu Vi Tam Giác Cân
Do tam giác cân có ba cạnh bằng nhau và không thay đổi nên cách tính chu vi tam giác cân cũng khá dễ dàng.
P = A X 3
Trong đó:
a là một cạnh bất kỳ trong tam giác cân
- Ví Dụ: Cho một tam giác cân với chiều dài ba cạnh bằng nhau đều bằng 5cm. Hỏi chu vi của tam giác cân này bằng bao nhiêu?
tinh chu vi tam giac
Theo công thức tính chu vi tam giác cân, chúng ta có cách giải như sau:
a = b = c = 5cm
Suy ra: P = ax3 = 5 x 3 = 15 cm
Cách tính chu vi tam giác cân khá dễ phải không?
Đa số công thức tính chu vi tam giác đều được đưa vào phần câu hỏi thêm của nhiều bài toán yêu cầu tính diện tích tam giác bằng công thức tính tam giác có sẵn áp dụng cho cả ba dạng tam giác phổ biến là tam giác thường, vuông. Do đó nếu bạn đã nắm và triển khai đúng các tính diện tích tam giác, bạn có thể áp dụng thêm công thức tính chu vi tam giác để kiếm thêm điểm số hoặc dễ dàng giải quyết vấn đề theo ý muốn.
Nếu bạn phải nhập liệu và tính toán trên Word, việc nắm được cách cách chèn công thức toán học trong Word cũng rất quan trọng bởi cách chèn công thức toán học trong Word khá khác biệt so với việc vẽ và viết trên giấy, người dùng sẽ cần biết cách kết hợp giữa Shape và các chữ để tạo nên một hình ảnh mô tả bài toán đúng cách nhất.
http://thuthuat.taimienphi.vn/cong-thuc-tinh-chu-vi-tam-giac-22867n.aspx
Chúc các bạn thành công!
A B C D E
Áp dụng định lý đường phân giác trong tam giác, ta được:
\(\frac{AB}{AD}=\frac{BC}{DC}\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{2}{3}\Rightarrow\frac{AB}{2}=\frac{BC}{3}\)(1)
Lại ap dụng định lý đường phân giác trong tam giác, ta được:
\(\frac{AC}{AE}=\frac{BC}{EB}\Rightarrow\frac{AC}{BC}=\frac{AE}{EB}=\frac{5}{6}\Rightarrow\frac{AC}{5}=\frac{BC}{6}\)(2)
Từ (1) và (2) suy ra \(\frac{AB}{4}=\frac{AC}{5}=\frac{BC}{6}=\frac{45}{15}=3\)
Vậy độ dài các cạnh của tam giác ABC lần lượt là 12;15;18 (cm)
Hình bạn tự vẽ nhé
Xét tam giác ABC có CE là đường phân giác của góc ACB (gt)
\(\Rightarrow\frac{AE}{EB}=\frac{AC}{BC}\)( tính chất đường phân giác trong của tam giác )
\(\Rightarrow\frac{AC}{BC}=\frac{5}{6}\)( Vì\(\frac{AE}{EB}=\frac{5}{6}\))
\(\Rightarrow6AC=5BC\)
Xét tam giác ABC có đường phân giác BD của góc ABC(gt)
\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tích chất của đường phân giác trong của tam giác )
\(\Rightarrow\frac{AB}{BC}=\frac{2}{3}\)( Vì \(\frac{AD}{DC}=\frac{2}{3}\))
\(\Rightarrow3AB=2BC\)
Theo bài ra ta có: \(\hept{\begin{cases}6AC=5BC\\3AB=2BC\end{cases}}\)và \(AB+BC+CA=45\)
\(\Rightarrow\hept{\begin{cases}\frac{AC}{5}=\frac{BC}{6}\\\frac{AB}{4}=\frac{BC}{6}\end{cases}}\)
\(\Rightarrow\frac{AB}{4}=\frac{AC}{5}=\frac{BC}{6}=\frac{AB+AC+BC}{4+5+6}=\frac{45}{15}=3\)
\(\Rightarrow\hept{\begin{cases}AB=3.4=12\left(cm\right)\\AC=3.5=15\left(cm\right)\\BC=3.6=18\left(cm\right)\end{cases}}\)
Vậy ...
Gọi độ dài cạnh tam giac đều ABC là a(athuộc Z+).Ta có hệ thức sau theo Pitago:a2-(a/2)2=(3V3)2
=>(3/4)a2=27=>a2=36(Mà a>0)=>a=6.Chu vi tam giác đều là:6.3=18cm
mk cung ket cau nay..............haha
pikachu ten j zay, lm wen nha