Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a) Hai tam giác ACE và BAD có:
\(\hept{\begin{cases}AC=BA\\\widehat{ACE}=\widehat{BAD}=60^o\\CE=AD=2BC\end{cases}}\)
Nên \(\Delta ACE=\Delta BAD\)
Suy ra AE=BD
b) Tam giác ABC đều nên \(\widehat{ABC}=\widehat{BAC}=60^o\)
Suy ra \(\widehat{ABE}=180^o-\widehat{ABC}=180^o-60^o=120^o\)
Lại có BE=BC=BA nên tam giác ABE cân tại B. Do đó,
\(\widehat{EAB}=\frac{180^o-\widehat{ABE}}{2}=30^o\)
Do đó: \(\widehat{EAD}=\widehat{EAB}+\widehat{BAD}=30^o+60^o=90^o\)
Vậy tam giác EAD vuông tại A.
c) Tam giác ACE vuông tại A có:
\(\hept{\begin{cases}AC=3cm\\CE=2BC=6cm\end{cases}}\)
nên: \(AE=\sqrt{CE^2-AC^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
Tam giác EAD vuông tại A có:
\(\hept{\begin{cases}AE=3\sqrt{3}\left(cm\right)\\AD=2BC=6\left(cm\right)\end{cases}}\)
Nên: \(DE=\sqrt{AE^2+AD^2}=\sqrt{27+36}=3\sqrt{7}\left(cm\right)\)
d) Tam giác BCD cân tại C có CM là đường phân giác nên CM cũng là đường cao của tam giác BCD. Do đó, \(CM\perp BD\)
Lại có: \(\Delta ACE=\Delta BAD\)nên\(\Delta ABD=\Delta CAE=90^o\)
Suy ra \(AB\perp BD\)
Vậy CM//AB (cùng vuông góc với BD).
e) Tam giác ABC đều nên \(\widehat{ACB}=60^o\Rightarrow\widehat{BCD}=120^o\)
Mà CM là phân giác của \(\widehat{BCD}\)nên \(\widehat{BCM}=60^o\)
Tam giác BMC vuông tại M có\(\widehat{BCM}=60^o\)
Nên: \(CM=\frac{BC}{2}=\frac{3}{2}=1,5\left(cm\right)\)
Bài 2:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 3:
Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Ta có: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
=>AE\(\perp\)BD tại H và H là trung điểm của BD
c: Xét ΔEBM và ΔEDC có
EB=ED
\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)
EM=EC
Do đó: ΔEBM=ΔEDC
=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC
Ta có: \(\widehat{EBM}=\widehat{EDC}\)
\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)
=>A,B,M thẳng hàng
Ta có: AB+BM=AM
AD+DC=AC
mà AB=AD và BM=DC
nên AM=AC
=>A nằm trên đường trung trực của MC(1)
Ta có: EM=EC
=>E nằm trên đường trung trực của MC(2)
Từ (1) và (2) suy ra AE là đường trung trực của MC
=>AE\(\perp\)MC
mà AE\(\perp\)BD
nên BD//MC
Ai giúp tui với