K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi M là trung điểm của BC

Ta có: ΔABC đều

mà AM là đường trung tuyến

nên AM\(\perp\)BC tại M

Xét ΔAMB vuông tại M có \(sinB=\dfrac{AM}{AB}\)

=>\(\dfrac{AM}{1}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AM=\dfrac{\sqrt{3}}{2}\)

Xét ΔABC có AM là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)

=>\(\overrightarrow{AB}-\overrightarrow{CA}=2\cdot\overrightarrow{AM}\)

=>\(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\cdot AM=2\cdot\dfrac{\sqrt{3}}{2}=\sqrt{3}\)

=>A đúng, B và C đều sai

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)

\(=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=1\)

=>D sai

NV
26 tháng 10 2020

Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}=-\overrightarrow{DC}\) ; \(\overrightarrow{AC}=-\overrightarrow{DB}\)

a/

\(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\Leftrightarrow\left|\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)

\(\Rightarrow\) Tập hợp M là trung trực của đoạn thẳng AD

b/ \(\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{AC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}\right|\)

Tập hợp M là trung trực đoạn CD

c/Dựng hình bình hành AEBC \(\Rightarrow\overrightarrow{EB}=-\overrightarrow{CA}\)

\(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BM}\right|\Leftrightarrow\left|\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{BC}\right|\)

Tập hợp M là đường tròn tâm E bán kính BC

21 tháng 7 2019
https://i.imgur.com/LbHpR0f.jpg
27 tháng 2 2016

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

10 tháng 10 2019

\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=5\)

\(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}+\overrightarrow{AD}\right|=\left|2\overrightarrow{AD}\right|=2AD=8\)

Kẻ hbh ABFC

Dễ tính được ACD=530

nên ACB=37=CBF

Theo định lý cos ta tính được AF

bạn tự tính nhá mk ko có mt

3 tháng 8 2019

Mệnh đề C sai.

Xét:

A. Đúng

Vẽ hbh ABDC => \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AD}\right|=AD\) (\(=2AH\))

Ta lại có, \(\Delta ABH\) vuông tại H, theo Pytago:

\(AH=\sqrt{AB^2-\frac{AB^2}{4}}=\frac{3\sqrt{3}}{2}\) \(\Rightarrow AD=3\sqrt{3}\)

B. Đúng

Vẽ hình vuông AECH\(\Rightarrow\) AEHB là hbh

Ta có:

\(\left|\overrightarrow{BA}+\overrightarrow{BH}\right|=\left|\overrightarrow{BA}+\overrightarrow{AE}\right|=\left|\overrightarrow{BE}\right|=BE\)

Ta lại có, \(\Delta BCE\) vuông tại C, theo Pytago:

\(BE=\sqrt{BC^2+CE^2}=\sqrt{BC^2+AH^2}=\frac{\sqrt{63}}{2}\)

C. Sai

Vẽ hbh AFHC \(\Rightarrow\)AFBH là hình vuông

\(\Rightarrow\left|\overrightarrow{HA}+\overrightarrow{HB}\right|=\left|\overrightarrow{HA} +\overrightarrow{AF}\right|=HF\) \(=AC=3\)

D. Đúng

\(\left|\overrightarrow{HA}-\overrightarrow{HB}\right|=\left|\overrightarrow{BA}\right|=BA=3\)

NV
23 tháng 11 2018

Theo tính chất trọng tâm tam giác ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\overrightarrow{GA}=-\overrightarrow{GB}-\overrightarrow{GC}\)

Thế vào đẳng thức giả thiết ta được:

\(BC.\left(-\overrightarrow{GB}-\overrightarrow{GC}\right)+AC.\overrightarrow{GB}+AB.\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\left(AC-BC\right)\overrightarrow{GB}=\left(BC-AB\right)\overrightarrow{GC}\) (1)

\(\overrightarrow{GB};\overrightarrow{GC}\) không phải 2 vecto cùng phương

\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}AC-BC=0\\BC-AB=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AC=BC\\AB=BC\end{matrix}\right.\)

\(\Rightarrow AB=AC=BC\) \(\Rightarrow\Delta ABC\) là tam giác đều

30 tháng 3 2017

Giải bài 6 trang 27 sgk Hình học 10 | Để học tốt Toán 10