K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

dùng Pitago đảo thử từng cặp 1 thôi:v

ta có: \(\left(b-c\right)^2+h^2=b^2+c^2-2bc+h^2\)(1)

vì tam giác ABC vuông ở A có đường cao AH nên \(a^2=b^2+c^2\)\(AB.AB=AH.BC=2S\)hay\(b.c=a.h\)

\(\Rightarrow b^2+c^2-2bc+h^2=a^2-2ah+h^2=\left(a-h\right)^2\)

13 tháng 2 2017

do đó \(\left(b-c\right)^2+h^2=\left(a-h\right)^2\)

chứng tỏ tam giác đó vuông

5 tháng 8 2018

HS tự làm

10 tháng 8 2018

Tương tự câu 1

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(a\sqrt{3}\right)^2+a^2=4a^2\)

hay BC=2a

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{a}{2a}=\dfrac{1}{2}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{3}}{2}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{a}{a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

24 tháng 3 2019

a, Sử dụng tỉ số cosC và sinC, tính được

a =  20 3 3 cm, c =   10 3 3 cm và  B ^ = 60 0

b, Sử dụng tỉ số sinB và cosB, tính được:

b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm

c, Sử dụng định lý Pytago và tỉ số sinB, tính được:

c =  5 5 cm, sinB =  10 15 =>  B ^ ≈ 41 , 8 0 ,  C ^ ≈ 48 , 2 0

d, Tương tự c) ta có

a =  193 cm, tanB =  12 7 =>  B ^ ≈ 59 , 7 0 ,  C ^ = 30 , 3 0