Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A D E H K
Cm : 1) Xét t/giác ABC và t/giác AED
có AB = AD (gt)
góc BAC = góc DAE (đối đỉnh)
AC = AE (gt)
=> t/giác ABC = t/giác AED (c.g.c) (Đpcm)
2) Ta có: t/giác ABC = t/giác AED (Cmt)
=> góc E = góc B(hai góc tương ứng)
Xét t/giác AEK và t/giác ABH
có AB = AE (gt)
góc K = góc H = 900 (gt)
góc E = góc B (cmt)
=> t/giác AEK = t/giác ABH (cạnh huyền - góc nhọn)
=> BH = EK (hai cạnh tương ứng) (Đpcm)
3) Ta có: t/giác ABC = t/giác AED (cmt)
=> góc C = góc D (hai góc tương ứng)
Xét t/giác ADK và t/giác ACH
có AD = AC (gt)
góc D = góc C (Cmt)
góc AKD = góc AHC = 900 (gt)
=> t/giác ADK = t/giác ACH (cạnh huyền - góc nhọn)
=> góc HAC = góc DAK (hai góc tương ứng) (Đpcm)
A B C H E K D
P/S:mk vẽ hình hơi xấu thông cảm >:
a,Xét \(\Delta ADE\)và\(\Delta ACB\)có:
\(AB=AE\left(gt\right)\)
\(AC=AD\left(gt\right)\)
Góc \(EAD\)= Góc \(BAC\left(gt\right)\)
\(=>\Delta ADE=\Delta ACB\left(c-g-c\right)\)
\(=>ED=BC\)(2 cạnh tương ứng)
b,Xét \(\Delta\)vuông \(AKE\)và\(\Delta\)vuông \(AHB\)có:
\(AB=AE\left(gt\right)\)
Góc \(ABH\)\(=\)Góc \(AEK\)
\(=>\Delta AKE=\Delta AHB\left(ch-gn\right)\)
\(=>BH=EK\)(2 cạnh tương ứng)
c,Ta có : Góc \(EAK\)= Góc \(BAH\)(cm câu b) (1)
Lại có : Góc \(EAD\)= Góc \(BAC\)(gt) (2)
Do : +) Góc \(EAK\)+ Góc \(DAK\)= Góc \(EAD\)(3)
+) Góc \(BAH\)+ Góc \(CAH\)= Góc \(BAC\)(4)
Từ 1 ; 2 ; 3 và 4 \(=>\)Góc \(CAH\)= Góc \(DAK\)(ĐPCM)
a) xét tam giác ADE và tam giác ABC có:
AD = AB (gt)
góc A chung
DE = BC (gt)
=> tam giác ADE = tam giác ABC (c.g.c)
b) dựa vào tam giác vuông đó bn
câu a) ko chắc!!!
ý lộn nhé góc BAC = góc DAC = 900 (đối đỉnh) chứ ko phải góc A chung đâu
76588987690
Bài làm thì dài lắm nên mik nói qua thôi
Bài 1
a) Vì AB=AC => tam giác ABC cân tại A
=>AH là đường trung tuyến ứng với BC mà trong tam giác cân đường trung tuyến cũng chính là đường phân giác và đường trung trực nên =>đpcm
b)Vì HK=HA ;BH=CH và AH vuông góc với BC nên ABKC là hình thoi(tứ giác có 2 đường chéo cắt nhau ở trung điểm mỗi đường và vuông góc với nhau)
=>AB song song với CK (tính chất 2 cạnh đối của hình thoi)
1: Xét tứ giác BCDE có
A là trung điểm của BD
A là trung điểm của CE
Do đó; BCDE là hình bình hành
Suy ra: BC//DE
2: AH\(\perp\)BC
mà BC//DE
nên \(AH\perp\)DE
mà AK\(\perp\)DE
và AH,AK có điểm chung là A
nên H,A,K thẳng hàng