Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: XétΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KDB}=\widehat{KEC}\)
Xét ΔKDB và ΔKEC có
\(\widehat{KDB}=\widehat{KEC}\)
BD=CE
\(\widehat{KBD}=\widehat{KCE}\)
Do đó: ΔKDB=ΔKEC
a) Ta thấy \(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=60^o\)
Vậy thì \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=120^o\)
b) Ta có ngay \(\widehat{EIB}=\widehat{IBC}+\widehat{ICB}=60^o=\widehat{BIN}\)
Vậy thì \(\Delta EBI=\Delta NBI\left(g-c-g\right)\Rightarrow IE=IN\)
Tương tự ID = IN nên IE = IN = ID.
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Giải: Xét tam giác ABC có góc A + góc B + góc C = 1800 (ĐL : tổng 3 góc của 1 tam giác)
=> góc B + góc C = 1800 - góc A = 1800 - 600 = 1200
Do BD là tia phân giác của góc B nên :
góc ABD = góc DBC = góc B/2
DO CE là tia phân giác của góc C nên :
góc ACE = góc ECB = góc C/2
Ta có: góc B + góc C = 1200
hay 2\(\widehat{DBC}\)+ 2\(\widehat{ECB}\)= 1200
=>2(góc DBC + góc ECB) =1200
=> góc DBC + góc ECB = 1200 : 2
=> góc DBC + góc ECB = 600
Xét tam giác BIC có góc DBC + góc BIC + góc ECB = 1800 (tổng 3 góc của 1 tam giác)
=> góc BIC = 1800 -(góc DBC + góc ECB) = 1800 - 600 = 1200
b) Do IF là tia phân giác của góc BIC
nên góc BIK = góc FIC = góc BIC/2 = 1200/2 = 600
Ba điểm B,I,D thẳng hàng nên góc BIK + góc FIC + góc CID = 1800
=> góc CID = 1800 - (góc BIK + góc FIC) = 1800 - 1200 = 600
Xét tam giác DIC và tam giác FIC
có góc DCI = góc ICF (gt)
BI : chung
góc CID = góc CIF = 600(cmt)
=> tam giác DIC = tam giác FIC (c.g.c)
=> CD = CF (hai cạnh tương ứng)
=> ID = IF (hai cạnh tương ứng) (1)
Ta có : góc CID = góc EIB = 600(đối đỉnh)
Xét tam giác EIB và tam giác FIB
có góc EIB = góc BIF = 600
BI : chung
góc FBI = góc IBF (gt)
=> tam giác EIB = tam giác FIB (g.c.g)
=> BE = BF (hai cạnh tương ứng)
=> IE = IF (hai cạnh tương ứng) (2)
Mà BC = BF + FC
hay BC = BE + CD
Từ (1) và (2) suy ra Đpcm
Tia phân giác của góc BIC cắt BC ở K. \(\Delta ABC\) có \(\widehat{A}=60^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0-60^0=120^0,\widehat{B_1}+\widehat{C_1}=\dfrac{\widehat{B}+\widehat{C}}{2}=\dfrac{120^0}{2}=60^0.\)
\(\Delta BIC\) có \(\widehat{B_1}+\widehat{C_1}=60^0\Rightarrow\widehat{BIC}=180^0-60^0=120^0.\)
Suy ra \(\widehat{I_1}=60^0,\widehat{I_4}=60^0.\)
IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0.\)
\(\Delta BIE = \Delta BIK\) (g.c.g) => IE = IK (2 cạnh tương ứng).
\(\Delta CID = \Delta CIK\)(g.c.g) => ID = IK (2 cạnh tương ứng).
Do đó ID = IE.