Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)
=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)
=> BC2=82+62=100BC2=82+62=100
=> BC=10BC=10cm
b) Vì AB = AD (gt)
mà A ∈∈ BD (gt)
=> A trung điểm BD (ĐN trung điểm)
=> CA trung tuyến BD (ĐN trung tuyến)
lại có: CA ⊥⊥ BD (AB ⊥⊥ AC do Aˆ=90oA^=90o)
=> ΔΔCBD cân tại C (dhnb)
=> BC = CD (ĐN ΔΔ cân)
và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)
=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)
Xét ΔΔBEC và ΔΔDEC có:
BC = CD (cmt)
C1ˆ=C2ˆC1^=C2^ (cmt)
EC: cạnh chung
=> ΔΔBEC = ΔΔDEC (c.g.c)
c) Vì CE là trung tuyến của ΔΔBCD (cmt)
mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
Bài 12:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+6^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD(gt)
Do đó: ΔABC=ΔADC(hai cạnh góc vuông)
Suy ra: CB=CD(hai cạnh tương ứng)
Xét ΔEAB vuông tại A và ΔEAD vuông tại A có
EA chung
AB=AD(gt)
Do đó: ΔEAB=ΔEAD(hai cạnh góc vuông)
Suy ra: EB=ED(hai cạnh tương ứng)
Xét ΔCEB và ΔCED có
CE chung
CB=CD(cmt)
EB=ED(cmt)
Do đó: ΔCEB=ΔCED(c-c-c)
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
a) Ta có :\(BC^2=AB^2+AC^2=6^2+8^2=10^2\Leftrightarrow BC=10\)
b)
b)ta có AB=AD(giả thiết)
=> CA là đường trung tuyến của BD
CA vuông góc với BD (t/g ABC vuông tại A)
=>CA là đường cao của BD
mà CA là đường trung tuyến của BD(chứng minh trên)
=>t/g BCD cân tại C
=>CA cũng là p/g của t/g ABC
=>góc BCA= góc DCA
Xét t/g BEC và t/g DEC
góc BCA= góc DCA
BC=CD(t/g BCD cân tại C)
EC: cạnh chung
Suy ra t/g BEC= t/g DEC(c-g-c)
c) trên trung tuyến CA có CE/AC=6-2/6=2/3
=>ba đường trung tuyến của t/g BCD đồng quy tại E
=>DE là đường trung tuyến của BC
=>DE đi qua trung điểm BC
a) Áp dụng định lý Py-ta-go: BC2=AB2+AC2=82+62=64+36=100 \(\Rightarrow\)BC=10
b) Xét tam giác ABC và tam giác ADC:BAC^=DAC^=90o; AB=AD; AC chung \(\Rightarrow\)tam giác ABC=ADC (2 cạnh góc vuông) \(\Rightarrow\)BC=DC
Xét tam giác ABE và ADE: BAE^=DAE^=90o; AB=AD; AE chung \(\Rightarrow\)tam giác ABE=ADE \(\Rightarrow\)BE=DE
Xét tam giác BEC và DEC: BC=DC; BE=DE; EC chung \(\Rightarrow\)tam giác BEC=DEC (cạnh_cạnh_cạnh)
c) Sorry bn, câu này mk ko bít làm T_T
a) Áp dụng định lý Py-ta-go: BC2= AB2+AC2= 82+62= 64+36= 100 \(\Rightarrow\)BC=10
b) Xét tam giác