K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Giải:
a) Xét ΔABD và ΔEBD có :

AB=BE(gt)

B1ˆ=B2ˆ(=12Bˆ)

BD: cạnh chung

⇒ΔABD=ΔEBD(c−g−c)

⇒DA=DE ( cạnh tương ứng )

Vậy DA=DE

b) Vì ΔABD=ΔEBD

⇒ góc A= góc BED

Mà  góc A=900⇒ góc BED=900

Vậy góc BED =900

c) VÌ ΔABD=ΔEBD ( cmt)

=> góc ABD = góc EBD( 2 góc tương ứng)

Xét \(\Delta ABIv\text{à}\Delta EBI\)có:

  AB = EB

góc ABD = góc EBD

BI cạnh chung 

=>\(\Delta ABI=\text{ }\Delta EBI\)

=> góc AIB = góc EIB và IA = IE          (1)

Mà góc AIB + góc EIB =180 0

=> \(\hept{\begin{cases}g\text{ócAIB=90^0}\\g\text{óc EIB=90^0}\end{cases}}\)(2)

Từ (1),(2) => BI là đường trung trực của AE

Mà I \(\in\)BD

=> BD là đường trung trực của AE

Vậy BD là đường trung trực của AE

14 tháng 3 2020

ko ai giúp mik à

14 tháng 3 2020

A B C E D I 1 2

A) XÉT \(\Delta BAD\)\(\Delta BED\)

 \(BA=BE\left(GT\right)\)

\(\widehat{ABD}=\widehat{EBD}\left(GT\right)\)

BD LÀ CẠNH CHUNG

=>\(\Delta BAD\)=\(\Delta BED\)(C-G-C)

=>DA=DE (HAI CẠNH TƯƠNG ỨNG)

B)TA CÓ ​\(\Delta BAD=\Delta BED\left(CMT\right)\)

\(\Rightarrow\widehat{A}=\widehat{BED}=90^o\)

C) XÉT \(\Delta BAI\)VÀ \(\Delta BEI\)

\(BA=BE\left(GT\right)\)

\(\widehat{ABI}=\widehat{EBI}\left(GT\right)\)

BI LÀ CẠNH CHUNG

\(\Rightarrow\Delta BAI=\Delta BEI\left(C-G-C\right)\)

​=>AI=IE(HAI CẠNH TƯƠNG ỨNG)\(\left(1\right)\)
\(\Rightarrow\widehat{I_1}=\widehat{I_2}\left(HGTU\right)\)

MÀ \(\widehat{I_1}+\widehat{I_2}=180^0\left(kb\right)\)

​THAY\(\widehat{I_2}+\widehat{I_2}=180^o\)

\(2\widehat{I_2}=180^0\)

\(\Rightarrow\widehat{I_1}=\widehat{I_2}=\frac{180^o}{2}=90^0\left(2\right)\)

từ (1) và (2) =>BD là đường trung trực của AE

5 tháng 5 2018

Xét △ ABD và △ EBD

có \(\hept{\begin{cases}AB=EB\\\widehat{ABD}=\widehat{EBD}\\BD=DB\end{cases}}\)

\(\Rightarrow\text{△}ABD=\text{△}EBD\)

\(\Rightarrow DA=DE\)

Ta có: △ ABD = △ EBD

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^0\)

\(\Rightarrow\widehat{BED}=90^0\)

Ta có: \(\widehat{FAD}+\widehat{DAC}=180^0\Rightarrow\widehat{FAD}=180^0-\widehat{DAC}\Rightarrow\widehat{FAD}=90^0\)

Ta có:\(\widehat{DEC}+\widehat{DEB}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{DEB}\Rightarrow\widehat{DEC}=90^0\)

Xét △ FAD và △ CED 

có \(\hept{\begin{cases}\widehat{FAD}=\widehat{CED}\\DA=DE\\\widehat{ADF}=\widehat{EDC}\end{cases}}\)

\(\Rightarrow\text{△}FAD=\text{△}CED\)

\(\Rightarrow DC=DF\)

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Ta có: ΔBAE cân tại B

mà BI là đường phân giác

nên BI vừa là đường cao vừa là đường trung tuyến

=>I là trung điểm của AE và BD\(\perp\)AE

=>AI=EI

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1 2024

Help me