K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2022

Cảm phiền bạn tự vẽ hình nhé.

Để cm AN là trung trực của IK thì ta chứng minh cả 2 điểm A và N đều thuộc trung trực của IK.

CM A thuộc trung trực của IK:

Do AC là trung trực của MK nên A thuộc trung trực của MK, do đó \(AM=AK\)

Tương tự, ta có \(AM=AI\). Từ đó \(AI=AK\left(=AM\right)\) hay A thuộc trung trực của IK.

CM N cũng thuộc trung trực của IK:

Vẽ tia đối Ax của tia AC. Áp dụng tính chất góc ngoài cho tam giác AKN, ta có \(\widehat{NAx}=\widehat{AKN}+\widehat{ANK}\). Mặt khác dễ thấy \(AK=AM=AN\) nên tam giác AKN cân tại A, từ đó \(\widehat{AKN}=\widehat{ANK}\). Vậy \(\widehat{NAx}=2\widehat{AKN}\)

Tương tự, ta được \(\widehat{IAx}=2\widehat{AKI}\). Từ đây ta có \(\widehat{IAN}=\widehat{NAx}-\widehat{IAx}=2\left(\widehat{AKN}-\widehat{AKI}\right)=2\widehat{IKN}\) hay \(\widehat{IKN}=\dfrac{1}{2}\widehat{IAN}\)

Kẻ tiếp tia đối Ay của tia AB, hoàn toàn tương tự như trên, ta cũng chứng minh được \(\widehat{NIK}=\dfrac{1}{2}\widehat{NAK}\)

Hiển nhiên \(\widehat{IAN}=\widehat{NAK}\) \(\Rightarrow\widehat{IKN}=\widehat{NIK}\) \(\Rightarrow\Delta NIK\) cân tại N hay \(NI=NK\). Từ đó N thuộc trung trực của IK. Vậy ta có đpcm.

 

 

 

24 tháng 9 2022

Bạn ơi cho mình hỏi, tại sao góc IAN lại bằng góc NAK vậy? Mình chưa hiểu chỗ đó cho lắm

a: XétΔAMB vuông tại M và ΔANC vuông tại N có

góc A chung

Do đó: ΔAMB\(\sim\)ΔANC

b: Ta có: ΔANH vuông tại N

mà NI là đường trung tuyến

nên NI=AH/2(1)

Ta có: ΔAMH vuông tại M

mà MI là đường trung tuyến

nên MI=AH/2(2)

Từ (1) và (2) suy ra NI=MI(3)

Ta có: ΔNBC vuông tại N

mà NK là đường trung tuyến

nên NK=BC/2(4)

Ta có: ΔMBC vuông tại M

mà MK là đường trung tuyến

nên MK=BC/2(5)

Từ (4), (5) suy ra NK=MK(6)

Từ (3) và (6) suy ra IK là đường trung trực của MN

28 tháng 2 2020

bài 3

A B C D E M N K K' x I O

Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )

Ta sẽ chứng minh K' \(\equiv\)

Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I 

dễ thấy O là trung điểm MN

do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)

\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N

\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)

Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là  đường phân giác \(\widehat{K'NE}\)( 1 )

mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng

28 tháng 2 2020

A B C H M E F D

Trên tia đối tia HC lấy D sao cho HD = HC

Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành

\(\Rightarrow\)DE // CF 

\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH

\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)

Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình 

\(\Rightarrow\)MH // BD

\(\Rightarrow\)MH \(\perp EF\)

30 tháng 10 2015

a) kẻ OF vuông góc với AB; OE vuông góc với AC 

theo dịnh lí duong TB tam giác => F là trung điểm AB, E là trug điểm AC => OF, OE là đường trung trực của ABC=> O ...............

b) HD:   Chứng minh D,M, H thẳng hàng , theo định lí đường TB  của tam giác => M là trung điêm của DH=> OM=1/2 AH=> dpcm

10 tháng 7 2016

M N K A B I H

a) Dễ thấy MH là đường trung trực của AB , I thuộc MH => IN = IK

=> tam giác INK cân tại I => Góc INH = góc IKH

Mà góc MNK = góc MKN vì tam giác MNK cân tại M

=> Góc BNA = góc AKB . Dễ dàng suy ra tam giác AIN = tam giác BIK (g.c.g)

=> AN = BK . Đến đây áp dụng định lí ta lét đảo được AB // NK => ABKN là hình thang có hai góc kề 1 đáy bằng nhau => ABKN là hình thang cân

b) Dễ thấy MK là đường trung trực của NK vì tam giác MNK cân, có đường phân giác MI

Vì AB // NK nên tam giác MAB cân tại M => có điều tương tự.

10 tháng 7 2016

Bài 2 sử dụng tính chất của hình thang cân là ra ^^

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

30 tháng 3 2018

a)   \(\Delta ABC\)có    \(AD\)  là phân giác   \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\) (tính chất đường phân giác trong tam giác)

hay  \(\frac{BD}{8}=\frac{DC}{10}=\frac{BD+DC}{8+10}=\frac{9}{18}=\frac{1}{2}\)

suy ra:    \(BD=\frac{8}{2}=4\)

              \(DC=\frac{10}{2}=5\)