K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

a: \(\widehat{B}=60^0\)

AB=8cm

\(AC=4\sqrt{3}\left(cm\right)\)

Độ dài cạnh góc vuông còn lại là:

4:tan60=4/3*căn 3

Độ dài cạnh huyền là:

4/3*căn 3:sin30=8/3*căn 3

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

20 tháng 6 2021

Giúp mình với ạ..

 

15 tháng 6 2015

Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)

Tam giác ABC vuông tại A, theo py ta go:

                           \(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)

=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15

TAm giac ABC vuông tại A theo hệ thức lượng 

                           AH.BC = AB.AC => AH=  (AB.AC)/BC =  (9.12)/15 = 7,2cm

                          AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4

                          =>  HC = BC - HB = 15 - 5,4 = 9,6cm

VẬY AH = 7,2 ; BH = 5,4;CH = 9,6 

 

1 tháng 8 2018

Lm sao 16x^2=144 ra x^2=9 vậy bạn

10 tháng 9 2018

Đáp án A

5 tháng 5 2021

gọi độ dài cạnh huyền là x(cm)(x>0)

độ dài cạnh góc vuông còn lại là:

x-4(cm) 

vì đây là 1 tam giác vuông nên ta có pt:

12*+(x-4)*=x*(định lí py-ta-go)

<=>144+x*-8x+16=x*

<=>144+x*-8x+16-x*=0

<=>160-8x=0

<=>8x=160

<=>x=20(cm)

vậy độ dài cạnh huyền của tam giác đó là 20 cm

(lưu ý dấu * ở đây là mũ 2 cj nhé)

5 tháng 5 2021

lưu ý dấu * là mũ 2 nhé

3 tháng 9 2020

a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC

Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)

Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\) 

b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé