Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét bài toán (II): Cho tam giác A'B'C' điểm D' thuộc cạnh BC sao cho \(\frac{A'B'}{A'C'}=\frac{D'B'}{D'C'}\).
Chứng minh: A'D' là phân giác góc A' của tam giác A'B'C'
A' C' D' B' E'
Trên tia đối tia D'A' lấy điểm E' sao cho B'E'=B'A'
=> \(\Delta B'E'A'\)cân tại B'
=> \(\widehat{B'A'D'}=\widehat{B'E'D'}\)(1)
Xét tam giác: A'D'C' và tam giác E'D'B' có: \(\frac{E'B'}{A'C'}=\frac{D'B'}{D'C'}\)và \(\widehat{C'D'A'}=\widehat{B'D'E'}\)
=> Hai tam giác trên đồng dạng
=> \(\widehat{C'A'D'}=\widehat{B'E'D'}\)(2)
Từ (1), (2) => \(\widehat{C'A'D'}=\widehat{B'A'D'}\)=> A'D' là phân giác góc A của tam giác A'B'C'
Quay lại bài toán của bạn:
A B C D E F M N H
Xét tam giác EFD có: M thuộc FD và \(\frac{ED}{EF}=\frac{MD}{MF}\)
theo bài toán (II) đã chứng minh ở trên ta có: EM là phân giác góc \(\widehat{FED}\)
tương tự FN là phân giác góc \(\widehat{DFE}\)
mà EM cắt FN tại H
=> H là giao ba đường phân giác trong tam giác DEF
=> DA là phân giác trong góc FDE
Như vậy cần chứng minh H là trực tâm của tam giác ABC
Bài này có thể phải dùng tới định lí Menenaus hoặc Ceva. Em đã được học về các định lý này chưa?
Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1224).png
Áp dụng định lý Menelaus cho bộ ba điểm (K,E,D) thằng hàng của \(\Delta\)AMC, ta được: \(\frac{KM}{KC}.\frac{EC}{EA}.\frac{DA}{DM}=1\Rightarrow\frac{KM}{KC}=\frac{EA}{EC}.\frac{DM}{DA}\)(1)
Tương tự đối với bộ ba điểm (H,D,F) thẳng hàng trong \(\Delta\)AMB, ta được: \(\frac{HB}{HM}.\frac{DM}{DA}.\frac{FA}{FB}=1\Rightarrow\frac{HB}{HM}=\frac{FB}{FA}.\frac{DA}{DM}\)(2)
Tiếp tục áp dụng định lý Ceva cho ba đường thẳng AD, BE, CF đồng quy tại M trong \(\Delta\)ABC, ta có: \(\frac{DC}{DB}.\frac{FB}{FA}.\frac{EA}{EC}=1\Rightarrow\frac{DC}{DB}=\frac{FA}{FB}.\frac{EC}{EA}\)(3)
Từ (1), (2), (3) suy ra \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)
\(\Delta\)BMC có \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)nên ba đường thẳng MD, BK, CH đồng quy (định lý Ceva đảo)
Vậy AD, BK và CH đồng quy (đpcm)