K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

A B C M F E G

xét \(\Delta BME\)\(\Delta CMA\)có \(\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{BME}=\widehat{CMA}\\ME=MA\left(gt\right)\end{cases}}\)(đối đỉnh)

do đó tam giác BME= tam giác CME (c.g.c)

suy ra BE = AC ( 2 cạnh tương ứng )

và \(\Rightarrow\widehat{EBM}=\widehat{ACM}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong suy ra BE//AC

suy ra \(\widehat{BAC}=\widehat{EBA}\)( đồng vị )

xét \(\Delta FBE\)và \(\Delta BAC\)có \(\hept{\begin{cases}FB=BA\left(gt\right)\\\widehat{FBE}=\widehat{BAC}\left(cmt\right)\\BE=AC\left(cmt\right)\end{cases}}\)

do đó \(\Delta FBE=\Delta BAC\left(c.g.c\right)\)

suy ra \(\widehat{BFE}=\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên BC//FE (1)

chứng minh tương tự ta có \(\Delta EMC=\Delta AMB\left(c.g.c\right)\)\(\Rightarrow AB=EC\)( 2 cạnh tương ứng

và \(\widehat{BAC}=\widehat{ECG}\) chứng minh tương tự ta có \(\Delta ACB=\Delta CGE\left(c.g.c\right)\)

suy ra \(\widehat{ACB}=\widehat{CGE}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí đồng vị nên BC//EG (2)

từ (1) và (2) ta cí FE//BC;EG//BC   mà theo tiên đề Ơ-clit thì qua điểm E nằm ngoài đường thẳng BC chỉ có 1 đường thẳng song song vói đường thẳng đó

nên FE trùng EG

hay F;E;G thẳng hàng

5 tháng 12 2018

hình

a) Xét tg MAB và tg MEC có :

M1 = M2 ( đối đỉnh)

BM = MC ( M là trung điểm BC)

MA = ME ( M là trung điểm AE)

=> Tg MAB = Tg MEC (cgc)

=>  góc BAM = góc MEC 

Mà 2 góc này ở vị  trí so le trong => AB // CE

b) góc BAC = 180 - B1 - C1

góc C3 = 180 - C1 - C2

Mà C2 = B1 ( suy từ câu a) 

=> góc BAC =  góc C3                (*)

_ Xét tg ABC và tg CEG có:

góc BAC = C3 (cmt)

AB = CE

AC = CG ( C là trung điểm AG)

=> Tg ABC = tg CEG (cgc)

=> góc C1 = góc CGE

Mà 2 góc này ở vị trí đồng vị => BC // EG                 (1)

_ Xét tg BME và tg CMA có:

góc M3 = góc M4 ( đối đỉnh)

MB = MC (M là trung điểm BC)

ME = AM (M là trung điểm AE)

=> Tg BME = tg CMA (cgc)

=> EB = CA                  (-)

góc B2 = C1

_  góc B3 = 180 - B1 - B2

C3 = 180 - C2 - C1

Mà B1 = C2 ( suy từ câu a)

B2 = C1 (cmt)

=> góc B3 = C3

Mà  góc C3 =  góc BAC (*) => B3 = BAC

_ Xét tg FBE và tg BAC có :

góc B3 = BAC ( CMT)

BF = AB ( B là trung điểm AF)

BỂ = ÁC (-)

=> tg FBE = BAC (cgc)

=> góc BFE = ABC 

Mà 2 góc này ở vị trí đồng vị 

=> BC // FE                                    (2)

_ Theo tiền đề ơ-clit, từ (1) và (2) => EG trùng với FE

=> BC // FG

Hay F, E, G thẳng hàng

                                                                                               -PMM-

Câu 2: 

Xét tứ giác ADBC có

M là trung điểm của AB

M là trung điểm của DC

Do đó: ADBC là hình bìnhhành

Suy ra: AD//BC và AD=BC

Xét tứ giác ABCE có

N là trung điểm của AC

N là trug điểm của BE

Do đó: ABCE là hình bình hành

Suy ra: AE//BC và AE=BC

Ta có: AD//BC

AE//BC

Do đó: D,A,E thẳg hàng

mà AE=AD

nên A là trung điểm của ED

15 tháng 4 2020

Xét tg MAB và tg MEC có:

M1 = M2 (đối đỉnh)

BM= MC ( M là trung điểm BC)

MA=ME (M là trung điểm AE)

=> Tg MAB = Tg MEC (cgc)

=> góc BAM = góc MEC

Mà 2 góc này ở vị trí slt => AB//CE

Góc BAC = 180-B1-C1

Góc C3=180 - C1-C2

Mà C2=B1 ( suy ra từ a)

=> góc BAC= góc C3

Xét tg ABC và tg CEG có:

góc BAC = góc C3 (CMT)

AB= CE

AC=CG ( vì C là trung điểm AG)

=> Tg ABC = tg CEG ( cgc)

=> góc C1= góc CGE

Mà 2 góc này ở vị trí đồng vị => BC // EG

Xét tg BME và tg CMA có:

góc M3 = góc M4 ( đối đỉnh)

MB = MC( M là trung điểm BC)

ME = AM ( M là trung điểm AE)

=> tg BME = tg CMA ( cgc)

=> EB = CA

góc B2 = C1

góc B3 = 180 - B1 - B2

C3= 180 - C2 - C1

Mà B1 = C2 ( suy từ câu a)

B2 = B1 ( cmt)

=> B3 = C3

Mà C3 = BAC

=> B3 = BAC

Xét Tg FBE và tg BAC có

góc B3= BAC ( cmt)

BF = AB ( B là trung điểm AF )

BE = AC

=> tg FBE = tg BAC ( cgc)

=> góc BFE = ABC

Mà 2 góc ở vị trí đồng vị

=> BC // FE (2)

Theo tiền đề Ơclit, từ ( 1) và (2) => EG trùng với FE

=> BC // FG

Hay F, E, G thẳng hàng

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
10 tháng 2 2019

a) Xét tg MAB và tg MEC có :

M1 = M2 ( đối đỉnh)

BM = MC ( M là trung điểm BC)

MA = ME ( M là trung điểm AE)

=> Tg MAB = Tg MEC (cgc)

=> góc BAM = góc MEC

Mà 2 góc này ở vị trí so le trong => AB // CE

b) góc BAC = 180 - B1 - C1

góc C3 = 180 - C1 - C2

Mà C2 = B1 ( suy từ câu a)

=> góc BAC = góc C3 (*)

_ Xét tg ABC và tg CEG có:

góc BAC = C3 (cmt)

AB = CE

AC = CG ( C là trung điểm AG)

=> Tg ABC = tg CEG (cgc)

=> góc C1 = góc CGE

Mà 2 góc này ở vị trí đồng vị => BC // EG (1)

_ Xét tg BME và tg CMA có:

góc M3 = góc M4 ( đối đỉnh)

MB = MC (M là trung điểm BC)

ME = AM (M là trung điểm AE)

=> Tg BME = tg CMA (cgc)

=> EB = CA (-)

góc B2 = C1

_ góc B3 = 180 - B1 - B2

C3 = 180 - C2 - C1

Mà B1 = C2 ( suy từ câu a)

B2 = C1 (cmt)

=> góc B3 = C3

Mà góc C3 = góc BAC (*) => B3 = BAC

_ Xét tg FBE và tg BAC có :

góc B3 = BAC ( CMT)

BF = AB ( B là trung điểm AF)

BỂ = ÁC (-)

=> tg FBE = BAC (cgc)

=> góc BFE = ABC

Mà 2 góc này ở vị trí đồng vị

=> BC // FE (2)

_ Theo tiền đề ơ-clit, từ (1) và (2) => EG trùng với FE

=> BC // FG

Hay F, E, G thẳng hàng

10 tháng 2 2019

Chương II : Tam giác

Hình vẽ