K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CC
3
4 tháng 2 2019
tu ve hinh :
xet tamgiac BCN va tamgiac CBM co : BC chung
BM = CN (gt)
goc BMC = goc CNB = 90 do BM va CN la duong cao (gt)
=> tamgiac BCN = tamgiac CBM (ch - cgv)
=> goc ABC = goc ACB (dn)
=> tamigac ABC can tai A (gt)
Do \(BM\) là đường trung tuyến của \(\Delta ABC\) nên ta có: \(AM=CM\)
Và \(CN\) là đường trung tuyến của \(\Delta ABC\) nên ta có: \(AN=BN\)
Mà \(BM=CN\left(gt\right)\)
Từ đó suy ra: \(AM=CM=AN=BN\)
Ta lại có: \(AM+CM=AC\)
Và \(AN+BN=AB\)
Nên: \(AM=CM=AN=BN\)
\(\Rightarrow AM+CM=AN+BN\)
\(\Rightarrow AC=AB\)
Vậy \(\Delta ABC\) có \(AC=AB\) là tam giác cân tại \(A\)
Bổ sung cái hình nhầy:>>