Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
A E B C D F 1 2 1 1 2 2 1 2
Giải:
a) Xét \(\Delta ABD,\Delta EBD\) có:
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
\(\widehat{A_1}=\widehat{E_1}=90^o\)
BD: cạnh huyền chung
\(\Rightarrow\Delta ABD=\Delta EBD\) ( c.huyền - g.nhọn ) ( đpcm )
b) Gọi giao điểm giữa AE và BD là I
Vì \(\Delta ABD=\Delta EBD\Rightarrow AB=BE\) ( cạnh t/ứng )
\(\Rightarrow AD=DE\) ( cạnh t/ứng )
\(\Rightarrow BD\) là trung trực của AE ( đpcm )
c) Trong \(\Delta DEC\left(\widehat{E_2}=90^o\right)\Rightarrow DC>DE\)
Mà AD = DE ( theo b )
\(\Rightarrow DC>AD\left(đpcm\right)\)
d) Ta có: \(\widehat{D_2}+\widehat{ADE}=180^o\) ( kề bù )
Mà \(\widehat{D_1}=\widehat{D_2}\left(gt\right)\)
\(\Rightarrow\widehat{D_1}+\widehat{ADE}=\widehat{FDE}=180^o\)
\(\Rightarrow E,D,F\) thẳng hàng ( đpcm )
Vậy...
a:BE=AE=AB/2
CD=CA/2
mà AB=CA
nên BE=CD
Xét ΔBEC và ΔCDB có
BE=CD
góc EBC=góc DCB
BC chung
Do đó:ΔBEC=ΔCDB
b: Xét ΔBGC có \(\widehat{GBC}=\widehat{GCB}\)
nên ΔGBC cân tại G
a/ Xét tam giác BEM và tam giác CFM có:
góc BEM = góc CFM = 900 (GT)
BM = MC (AM là trung tuyến t/g ABC)
góc B = góc C (t/g ABC cân)
=> tam giác BEM = tam giác CFM
b/ Ta có: AB = AC (t/g ABC cân)
BE = CF (t/g BEM = t/g CFM)
=> AE = AF
Xét hai tam giác vuông AEM và AFM có:
AE = AF (cmt)
AM: cạnh chung
=> tam giác AEM = tam giác AFM
=> ME = MF
Ta có: AE = AF; ME = MF
=> AM là trung trực của EF
c/ Xét hai tam giác vuông ABD và ACD có:
AB = AC (GT)
AD: cạnh chung
=> tam giác ABD = tam giác ACD
=> BD = CD
Ta có: AB = AC; BD = CD
=> AD là trung trực của EF
Ta có: AM là trung trực của EF
AD là trung trực của EF
=> AM trùng AD
Vậy A;M;D thẳng hàng.
---> đpcm.
Ngày mai mình nộp bài rồi, mong các bạn chỉ bài giúp mình . mình không hiểu gì về 2 bài toán này cả TT_TT