Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
góc BAE chung
Do đó: ΔABE=ΔACF
=>BE=CF
b:
Sửa đề Chứng minh BE+CF>BH+CH
BE>BH
CF>CH
=>BE+CF>BH+CH
Kẻ EF // BC
Xét \(\Delta AEF\)có:
Góc C = Góc E
Góc F = Góc B ( EF // BC; 2 góc đồng vị)
\(\Rightarrow\Delta AEF\)cân tại A.
nên AE = AF
a: Xet ΔAEB và ΔAFC có
góc AEB=góc AFC
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC co
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB∼ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
FC=EB
=>ΔFBC=ΔECB
=>góc FBC=góc ECB
=>góc ABC=góc ACB
=>ΔABC cân tại A