K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>CM=2/3CA=16/3(cm)

c: Gọi giao của d với AC là N

d là trung trực của AC

=>d vuông góc AC tại N và N là trung điểm của AC

=>QN//AD

Xét ΔCAD có

N là trung điểm của AC

NQ//AD

=>Q là trung điểm của CD

Xét ΔCDB có

BQ là trung tuyến

M là trọng tâm

=>B,M,Q thẳng hàng

11 tháng 8 2023

a, Ta có: AB < AC < BC

=> C < B< A

b, Xét tam giác BCD có CA và DK là đường trung tuyến

CA cắt DK tại M

=> M là trọng tâm tam giác BCD

=> MC= 2/3 AC= 2/3.8= 16/3 cm

c, Xét tam giác ABC và tam giác ADC có:

AB = AD

BAC= DAC= 90°AC chung

=> tam giác ABC = tam giác ADC (c.g.c)

=> ACB= ACD (2 góc tương ứng) và BC = DC ( 2 cạnh tương ứng) (1)

KQ là đường trung trực của AC

=> KQ vuông góc với AC tại E

Xét tam giác KCE và tam giác QCE có:

KCE= QCE

EC chung

KEC= QEC=90°

=> tam giác KCE = tam giác QCE (gcg)

=> KC = QC (2 cạnh tương ứng) (2)

Mà K là trung điểm BC (3)

Từ (1), (2) và (3) suy ra Q là trung điểm của DC

Xét tam giác BCD có M là trong tâm

=> M thuộc đường trung tuyến BQ

=> B, M, Q thẳng hàng

13 tháng 10 2023

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

\(\widehat{BAC}=90^0\)

Do đó: ABDC là hình chữ nhật

b: Xét ΔADE có

M,H lần lượt là trung điểm của AD,AE

=>MH là đường trung bình

=>MH//DE

=>DE vuông góc AE

Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)

=>ABED là tứ giác nội tiếp

=>\(\widehat{BDE}=\widehat{EAB}\)

=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)

=>\(\widehat{BDE}=\widehat{C}\)

mà \(\widehat{ACB}=\widehat{ADB}\)

nên \(\widehat{BDE}=\widehat{ADB}\)

=>DB là phân giác của \(\widehat{ADE}\)

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMRa) tam giác OAM = tam giác OBMb)AM = BM; OM \(\perp\)ABc) OM là đg trung trực của ABd) Trên tia Ot lấy điểm N. CMR: NA = NB2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMRa) AB // KE             b) góc ABC = góc KEC; BC =...
Đọc tiếp

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMR

a) tam giác OAM = tam giác OBM

b)AM = BM; OM \(\perp\)AB

c) OM là đg trung trực của AB

d) Trên tia Ot lấy điểm N. CMR: NA = NB

2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMR

a) AB // KE             b) góc ABC = góc KEC; BC = CE

3.Cho góc nhọn xOy. Trên tia Ox lấy 2 điểm A, C. Trên tia Oy lấy 2 điểm B,D sao cho OA = OB, AC = BD

a)CMR: AD = BC

b) Gọi E là giao điểm AD và BC. CMR tam giác EAC = tam giác EBD

c) CMR: OE là phân giác của góc xOy, OE \(\perp\)CD

4.Cho tam giác ABC có góc B = 90, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA

a) Tính góc BCE                                             b) CMR BE//AC

1
29 tháng 12 2018

câu 1

a) xét tam giác OAM và tam giác OBM có:

OB=OA(gt)

góc BOM= góc MOA(Ot là tia phân giác của góc xOy)

OM:cạnh chung

tam giác OAM= tam giác OBM(c.g.c)

b)vì tam giác OAM= tam giác OBM(câu a)

AM=BM(2 cạnh tương ứng)

góc OMB= góc OMA(2 góc tương ứng)

Mà hóc OMB+góc OMA=180o(kề bù)

góc OMB=góc OMA=180o:2=90o

OM vuông góc với AB

c)vì MA=MB(câu b)

Mà OM vuông góc với AB(câu b)

OM là đường trung trực của AB

d)xét tam giác NBM và tam giác NAM có

AM=BM(câu b)

góc BMN= góc AMN(=90o)

MN:cạnh chung

tam giác NBM= tam giác NAM(c.g.c)

NA=NB(2 cạnh tướng ứng)

31 tháng 3 2017

“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}

““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}

18 tháng 1 2018

cho abc tia phan giac cua goc b cat ac o d tren tia doi cua tia ba lay e sao cho be = bc chung minh bd song song ec cai nay lam sao

a: Xét ΔABC và ΔAEF có 

AB=AE

\(\widehat{BAC}=\widehat{EAF}\)

AC=AF

Do đó: ΔABC=ΔAEF

Suy ra: \(\widehat{ABC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên FE//BC

Vì ∆ABC cân tại A 

Mà AM là trung tuyến BC 

=> AM là trung trực và phân giác ∆ABC 

=> BAM = CAM 

Gọi O là giao điểm AM và DE

Mà OAC = OAD ( đối đỉnh )

BAO = OAE ( đối đỉnh )

Mà BAO = CAO (cmt)

=> OAD = OAE 

Hay AO là phân giác DAE(1)

Mà AD = AE 

=> ∆ADE cân tại A(2)

Từ (1) và (2) 

=> AO là trung trực ∆ADE 

=> AO = OC 

AO\(\perp\)DE

Hay D và E đối xứng qua AM